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By a simple extension of the canonical formalism, one can inclUde mass and proper time as 
dynamical variables in mechanics. Such a theory allows one to treat particles with variable mass and 
also classically decaying particles. The theory has other properties which offer a fresh approach to 
classical dynamics. For example, the inertia of a system becomes an active concept, and the rest 
mass of an interacting particle changes to include its binding energy. Also, the proper time as 
measured by a clock on a decaying particle runs at a different rate from a clock on a stable particle. 
This effect causes a "decay red shift" to be present in classically decaying systems, over and above 
other red shift effects. The effect could be used to remove the acausal properties of 
"pre-acceleration" in radiative reaction, and it is suggested that for rapidly decaying massive objects, 
like quasars, this effect might be responsible for part of their red shift. 

1. INTRODUCTION 

Recently an extension of classical mechanics was 
developed in which particles can have a nonconstant 
mass!. We will show that one can use such a theory to 
treat classically decaying systems, and also that with it 
one can include the binding energy of an interacting sys
tem in the inertia. of the system. In tliis respect the 
theory is more closely in accord with the relativistic 
concept of the unity of energy and mass than is conven
tional mechanics, where mass is treated as a fixed 
parameter. In this paper we will restrict ourselves to 
working out some simple examples in order to indicate 
the possible uses of this unique feature of the theory, and 
its promise of offering a fresh approach to mechanics. 

The basic concept of this theory is that the proper 
time of a particle, T, the time read by a clock moving 
with the particle, is considered to be an independent 
degree of freedom. Then the relation between proper 
time and coordinate time follows as an "equation of 
motion" for T. The justification for this procedure 
comes directly from the equivalence prinCiple, as ex
plained in GI. The formalism of the theory is reviewed 
in Sec. 2. 

In this theory, the "momentum" conjugate to T is the 
mass of the particle and in fact one can produce exam
ples to show that there must actually be an uncertainty 
principle between measurements of mass and proper 
time (see GIl). This is a necessary consequence of the 
formalism, although the chief motivation for the theory 
was to provide a classical theory of particle decay. Just 
as x-dependent potentials produce momentum changes, 
so T-dependent potentials produce mass changes in the 
theory. 

Some examples of decaying particles are treated in 
Sec. 3. However, an extra feature of the theory is that 
a clock situated on a decaying particle will run at a 
different rate from one on a stable particle. Thus it is 
insufficient to know merely the pOSition and velocity of 
a particle, in order to determine the rate at which 
proper time passes. One must also know whether it is 
stable. It is possible to make models of composite par
ticles in both relativity theory and quantum mechanics, 
which make this result appear quite plaUSible. But such 
models are necessarily arbitrary, in a manner similar 
to classical models of the electron, while the effect 
follows naturally as a universal phenomenon in this 
theory. 

The T-dependent interaction that describes decay is 
essentially the gravitational interaction, appropriately 
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generalized. It is not that gravity "causes" particles to 
decay, but that if there is some interaction causing the 
decay, then there is also a gravitational T-dependence 
induced to cause a change in inertia. This is somewhat 
analogous to the statement that in electromagnetic 
theory, if there is some arbitrary nonelectrical force 
causing a charged particle to accelerate, then there will 
be an 'accompanying electromagnetic effect causing it 
to radiate. And of course it should not be too surprising 
that changes in inertia should be transmitted via graVity, 
which after all couples to a system directly through its 
inertia, although this does represent a new use for 
gravity. 

Even though the theory was developed to describe 
decay, any interaction at all actually affects the mass 
of a particle. When a particle interacts with another 
particle or with an external field, any binding energy 
must show up as a change in inertia of the system. For 
example, if two particles are closely bound by a very 
strong spring, then according to relativity the equality 
of mass and energy demands that the mass of the com
posite system must include the binding energy of the 
spring. And if another particle passes by this system, 
the gravitational attraction it will feel will be that due 
to the entire mass, including the binding energy of the 
spring. 

Yet claSSical physics does not include this effect at 
all. To the extent that the binding energy is small com
pared to the rest energy, this is correct to order 
(v2jc 2); however, it is certainly conceptually possible to 
have very strong binding forces between the particles 
and yet have the system only weakly coupled to the rest 
of the universe. In such a case classical physics is very 
poor. (Of course, general relativity must include such 
effects, but as they are higher order, they are very hard 
to calculate, while in our theory they are much easier 
to separate. A tensor form of our theory, which we have 
not yet explored, should reduce to general relativity for 
stable particles.) 

Unlike the case in classical physics, in our theory 
the mass of a particle automatically adjusts itself to in
clude the binding energy, so that the mass of an inter
acting particle is not the same as that of the free par
ticle. As such, the theory provides a much more realis
tic first approximation in treating gravitational problems 
than a theory where the mass is a fixed parameter. This 
inclusion of binding energy is discussed in Sec. 4, and it 
should make the theory useful in dealing with the classi
cal problem of self energy, though we do not attack that 
problem here, except to point out that the inclusion of 
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binding energy, plus the time difference effect between 
a clock on the particle and one in the laboratory, lead 
to a possible way of removing the acausal behavior of 
radiation reaction in classical physics. 

In order to gain a better understanding of the mechan
ism by which binding energy is incorporated in the 
theory, the formalism is broadened in Sec. 5 to include 
the case of two interacting particles, rather than merely 
that of a particle in an external field. Finally, in Sec. 6, 
a canonical transformation to a new constant mass and 
linear proper time is introduced, whose main advantage 
will appear in the discussion of the Schrodinger equation 
in the companion paper. 2 

Because of the novelty of the "decay red shift" of 
Sec. 3, which implies that a clock at rest on a decaying 
particle will run at a slower rate that a clock at rest at 
the same point, but attached to a stable particle, we in
clude an appendix to discuss the effect more fully. In 
the Appendix we show that one may construct conven
tional relativistic models of decaying particles, which 
provide the particle with an internal structure, and we 
find that the internal structure produces just such a 
decay red shift. However, our theory implies that these 
structure effects persist even when these models are 
reduced to the point particle limit, in which case they 
are taken into account by the new degrees of freedom, 
T and m. We also show that it is possible to give an 
equivalence principle argument for the existence of the 
decay red shift, and we suggest that in rapidly decaying 
massive systems, such as quasars, a portion of their 
red shift might be due to this effect. 

2. REVIEW OF THE FORMALISM 

In this theory, the proper time T, as read by a clock 
moving with a particle, and the mass m of the particle, 
are treated as conjugate dynamical variables, in the 
same way as the coordinates x i, and the momenta Pi' of 
the particle. The relationship between the proper time 
and coordinate time, T == T(t), then arises dynamically 
through the equations of motion, just as does the be
havior of xi = x i(t). We shall restrict ourselves here 
to the nonrelativistic case, although the relativistic 
case was also treated in GI. 

The Lagrangian for a Single particle in an external 
field has the form 

L = L(x i' Vi' T, T; t), 

and the conjugate momenta are defined by 

aL ilL 
Pi == ~, mc2 == -. 

uV i of 

(From here on we shall assume that c == 1.) The 
Hamiltonian becomes 

H(Xi' Pi' T, m; t) = PiVi + m+ - L 

and Hamilton's equations are 

an 
-==v., 
api ' 

aH . 
-= T, am 

aH • 
-- = p., 

aXi ' 

aH . 
--= m aT 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

If there is only a gravitational potential present, of the 
form mcp(x, T), (L~ rav == Lo)' then one has the following 
interesting situatIon. In the Lagrangian form, the equiv
alence principle is given by the condition (see GI) 
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Lo = O. (2.5) 

This serves as a guide to the construction of Lo, which 
we take as 

Lo = a(f- (glluXlliV )1/2) 

>::j a(t - (1 - ~v2 + cp» == aX, (2.6) 

where a is a function of (x, T, t) (and' == d/dt). 

If there is also a nongravitational potential V present, 
then we take 

L = Lo - V = aX - V = a(f - 1 + ~v2 - cp) - V. (2.7) 

The equations of motion, 

dPi oL dm ilL 
- - - == 0, - - - - 0 (2.8) 
dt aX

i 
dt aT - , 

become, from Eq. (2. 2), and assuming X = 0, 

Pi == av,' 

m== a, 
. acp _ , 
m==-a-=-acp aT 

(2.9) 

(2. 10) 

(we shall use the convention' == a/aT throughout this 
paper). The Hamiltonian becomes 

. p2 
H = pv + mT - L = m + - + mcp + V, 

2m 
(2. 11) 

and the Hamiltonian form of the equations of motion are 

aH Pi 
v·=-==-, ap i rrt' 

. aH acp 
Pi=--=-m-, ax; ax, 

(2. 12) 

oH p2 
f = - == 1 - -" - + cp == 1 - ~v2 + cp, am 2m2 

(2.13) 
. aH ocp 

m = -- = - m-. aT aT 
The equation for t is just the equation 

X = O. (2. 14) 

It is an interesting mathematical property of the theory 
that eq. (2. 14) follows from the equations of motion in 
the Hamiltonian formalism, but must be postulated sep
arately in the Lagrangian formalism, where it implies 
the equivalence principle. 

There is one further very important restriction we 
shall impose on the theory. Rather than allow the poten
tial cp to be arbitrary, we shall assume that the theory 
is the nonrelativistic limit of the relativistic theory of 
GI. In that theory cp is the fourth component of a vector 
potential B Il' which is subject to a Yang-Mills type of 
gauge invariance. 3 The invariant coupling is 

Pll -4P Il - mB Il 
(2. 15) 

and the gauge condition is 

(2. 16) 

In the nonrelativistic limit, B II -4 (0, icp), and this sur
vives as 

acp + cpcp' = o. 
at 

(2. 17) 
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We shall assume that the arbitrariness of cp is re
stricted by the gauge condition (2.17). This is a severe 
nonlinear restriction and it greatly limits the form of 
the potential, and also strongly affects the possible solu
tions allowed. We do not know how necessary this re
striction is in contributing to the physical significance 
of the theory. But since we are at present mainly in
terested in discovering its physical content we feel that 
any limit on the arbitrariness allowed is helpful, even 
this stringent one. 

One further note relevant to the physical content is 
that a tensor theory would probably be a more realis
tic model than a vector theory. However, we have ex
plored the vector theory much further and have the 
electromagnetic analogy to draw on, and will be able 
to demonstrate the most interesting effects of the theory 
within this model. We will examine the tensor theory at 
a later time. 

The gauge condition (2. 17) can be solved explicitly. 
Either there is no t or T dependence, in which case 

cp = tp(x), (2. 18) 

or if there is, it has the following form. Rewrite Eq. 
(2.17) as 

(otp/ot) T 

- = (oTlat) = cp. 
(Otp/OT)t <p 

(2. 19) 

Then consider the equation as a linear one in the var
iable T, 

T = T(X, cp, t). 

The solution to Eq. (2. 19) is then 

T = tcp + f( cp, x). 

(2. 20) 

(2.21) 

This is the most general solution of the nonlinear 
gauge restriction on cp, if there is t and T dependence, 
and it gives the implicit dependence of cp on t and T. It 
also shows that if there is an explicit T dependence in 
the problem, which determines the decay of the particle 
through Eq. (2. 10), then there will also be an explicit t 
dependence. 

An alternative expression, equivalent to Eq. (2. 21), 
is given by 

f(x, cp, T - tcp) = o. (2.22) 

3. DECAYING PARTICLES 

The advantage of being able to treat particles with 
varying masses shows up most obviously in the case of 
a particle which is actually decaying, and losing mass. 
For conservation of energy, the particle must be coupled 
to other energy sources so that this energy shows up 
elsewhere. However, we will be concerned with the case 
where the particle is considered as isolated, and losing 
mass under the influence of an external T-dependent 
gravitational potential. Then the loss of energy is no 
more serious than the nonconservation of the momen
tum of a particle in an external field, where the con
servation can always be restored by treating the fully 
interacting system. 

As noted in the introduction, the gravitational poten
tial does not cause the particle to decay, but causes the 
mass of the particle to change as it loses energy. This 
differs from the standard nonrelativistic decay of a 
radiating particle, say, in the following way. In the 
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standard theory there is no connection between mass 
and rest energy, nonrelativistically. So if a particle has 
rest energy m o' and an energy of interaction A (A in
cludes kinetic and potential energy), nonetheless the 
particle still has inertia mo' If while accelerating the 
particle radiates away energy, this process will con
tinue until the particle has radiated away all the energy 
A, and comes to rest. But throughout the entire 
radiation process, the particle has mass mo' This 
means for example, that it has kinetic energy ~mov2, 
and a gravitational coupling to other particles of 
GmoM/r. This is consistent to order (v2/c2) provided 
the binding energy itself is of order (v2 / c2). 

In our theory however, the mass of the particle will 
be mo + I:;. initially, and as it loses energy, it will also 
lose mass, until finally the mass will be mo' It is this 
change in mass that is brought about by the T-depend
ent gravitational field. 

The Simplest example of a decaying particle is that 
of a particle of mass mo + A, at rest, spontaneously 
decaying to mass mo under the influence of an external 
potential cp(T, t). There are no position-dependent 
forces acting and the particle remains at rest. The 
Hamiltonian for this case is 

H = m + mcp, (3. 1) 

and the relevant gauge condition is 

T = tcp + f(cp). (3.2) 

By differentiating with respect to T, we have 

Taking the total time derivative of Eq. (3. 2) gives 

. (Of) . ./ T= cp+ t+ acp cp= cp+ cp cp'. (3.4) 

The equation of motion for T, Eq. (2. 13), gives 

i = 1 + cp, (3.5) 

which with Eq. (3.4) yields 

ip = cp'. (3.6) 

The mass dependence is determined by Eq. (2. 13), 

rh/m = - cp' =- (p, 

so that 

m = moe-<p(t). 

(3.7) 

(3.8) 

Thus, by the choice of a function f( cp) in Eq. (3. 2), one 
determines the time dependence of cp, CPt t) = cp( T(t), t), 
and therefore of the mass. Conversely, by choosing a 
time dependence for the decay, m = m(t), one can use 
Eq. (3. 3) to solve for the explicit from of cp, cp(T, t). 

As a specific example, consider a particle decaying 
exponentially from mass mo + A to mass m o' 

m = ma + I:;.e-rt • (3.9) 

We will assume that A « ma and solve only to lowest 
order in I:;./mo for convenience, although this is an un
necessary restriction, of course. Then 
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and 
Ae-yt 

ep(t) ~ ---. 
mo 

Note that ep is always < O. 

(3. 10) 

(3.11) 

The fact that the particle ultimately ceases decaying 
by t = 00 has been used to normalize ep to ep(co) = 0, so 
that for the stable particle at rest at t = 00, f = 1 from 
eq. (3.5). To find ep(T, t), we use Eq. (3. 3), 

21 = - t + -J:. = - (!) In (- m !!!.) - .-L , 
oep ep y 0 A yep 

(3. 12) 

f(ep) = - (~) [ep In(- m~ep)_ ep + In(- ep) + cJ. 
The constant is determined from the condition on T(t}, 

T(O) = 0, (3. 13) 

which implies that the particle's proper time is initially 
"set" to coincide with the laboratory time. Then, since 
at t = 0, ep = - A/ mo' Eq. (3. 2) gives f(- A/mo} = 0, 
so that Eq. (3.12) becomes 

(3.14) 

and this determines ep(T, t} implicitly from Eq. (3. 2). 

An important feature of the solution, which is charac
teristic of all such problems is that at t = 00, T ~ t. 
In fact, from Eq. (3. 6), 

T = t + / epdt ~ t - (~) (1- e-yt), 
o ymo 

T(t ~ 00) ~ t -~. (3.15) 
ymo 

This is a novel feature of the theory, that the rate of 
change of proper time for a decaying particle is different 
from that for a stable one. This is true even for a par
ticle at rest, so it should not be confused with the varia
tion of T from special relativity. 

As surprising as this result may be, it is nonetheless 
possible to give special relativistic and quantum mech
anical models of an unstable clock which make it appear 
quite plausible. However, these models are necessarily 
arbitrary, as they endow the particle with a structure, 
like the classical theory of the electron. But in our 
theory, it appears as an inevitable and natural result, 
independent of the construction of any specific model, 
though to lowest order the models we present predict 
the same result. 

For example, one can consider a decaying quantum 
mechanical system of two states, 

(3. 16) 

with the normalized wave function 

(3. 17) 

so that the average energy agrees with the claSSical 
energy. 
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Ii = (l,b1Ho 1l,b) = (1- e-yt}mo + e-yt(mo + A) 

= mo + Ae-yt. (3.18) 

The total Hamiltonian is of course nondiagonal in this 
representation. Now one can define a "proper time" for 
the system (Ii == 1) by the equation 

exp(- imot) == exp(- i J~ Hdt). (3.19) 

This equation defines the proper time by equating the 
corresponding phases of the decaying system and one 
in the ground state. Then 

mot = JT (mo + Ae-yt)dt = moT + (~) (1- e-yt), 
o y (3.20) 

which is just exactly Eq. (3. 15), so that according to the 
model, the time the particle spends in its excited state 
effectively slows up its internal clock. 

Special relativity gives a similar result. Imagine a 
block of matter at rest, Which is cooling off according 
to the formula E = Mo + Ae-yt. If we define the "proper 
time" of the block as the average value of the proper 
time of each of its N molecules, each of rest mass 
mo = Mo/N, then 

dT = (~) ~dTi = (~) ~(1 - v~)1/2dt 
dt (V~) dt mov~ 

R< - ~ 1 - - = dt - -- ~ --
N 2 Nmo 2 

dt A 
= dt--- (E - Mo) = dt-- e-ytdt. 

Nmo mo 
(3.21) 

Again, this gives T - t ~ - A/ MoY' because proper time 
runs more slowly for an excited particle. While each of 
these examples is perhaps plaUSible, though depending on 
such arbitrary concepts as "average proper time of its 
molecules, " the variable mass theory produces the iden
tical result as a model-independent, universal phenome
non. A more detailed analysis of this effect, the "decay 
red shift," is contained in the appendix. 

Two more points that we note in passing are: First, in 
our example, where A « m o' the total Hamiltonian is 
conserved to lowest order in A/mo' even though it is 
explicitly time-dependent by virtue of the time-depen
dence of ep(T, t), 

H= m(l + ep) = mo(1 + (:)e-yt) (1- (:Je-yt) 

R< mo + e((:~) . (3.22) 

Second, for the opposite case A :::?> m o' the Eq. (3.15) 
would be replaced by 

4. BINDING ENERGY AS INERTIA 

While the most immediate manifestation of a variable 
mass occurs in the problem of a decaying particle, yet 
even a stable particle has a nonconstant mass, in a very 
real sense. If a stable particle is placed in an external 
force field there is an energy of interaction between the 
particle and the field. And according to relativity, this 
energy should certainly appear as a change in inertia of 
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the system. In the present theory this effect is in fact 
present and we shall demonstrate it. 

Consider the following simple situation. A particle of 
free mass nil is placed in an external, static nongravi
tational force field, governed by a potential V(x). Now 
besides the external force, there will also be present a 
gravitational inertia-changing potential. This is a new 
feature of the theory. Since the particle carries inertia, 
and this inertia is capable of changing, there is necessar
ily a gravitational coupling present. 

There is, of course, one sense in which the theory is 
incomplete. But all external force theories are incom
plete in this same way, so it is not peculiar to this 
theory. Namely, one must choose the external potential 
arbitrarily, in order to produce the desired force. In a 
full relativistic theory of interacting particles, the 
effective potential acting on a body is determined by 
the interaction coupling. In the non relativistic theory, 
the potential is essentially produced by magic. Once it 
is properly chosen, the effects follow. However, any 
deeper explanation depends on a fully interacting theory. 
We must content ourselves with producing a potential 
with the desired properties, without further justification. 

The Hamiltonian for the problem is 

p2 
H = rn + - + mcp + V, 

2m 

The equations of motion are 

p 
v =-, 

m 
p = - mVcp - VV, 

i = 1 + cp - tv2, 
m = - mcp'. 

(4. 1) 

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 

The potential cp is given by a Simple extension of the 
form of the potential of Sec. 3 [still consistent with the 
gauge condition, Eq. (2.21)], 

1 j" T=tcp+f(cp)-a- v·dx. 
(1') 

(4.3) 

The last term is to be integrated along the path (P) of 
the particle, and guarantees that Eq. (4. 2c) is identically 
satisfied. Taking the partial derivative of Eq. (4. 3) with 
respect to T, we find again that 

cp' = (t + :~rl. 
Taking the partial derivative with respect to x gives 

0=(..1.-) vcp -!:!... 
cp' 2' 

The total time derivative of Eq. (4. 3) is 

i = cp + tip +(:~) ip - t v2 = 1 + cp - t v2 

= cp - tv2 + ip 
cp' , 

from Eq. (4. 2c). So we again have, as in Sec. 3, 

ip = cp' = _ m, 
m 

The equation of motion, Eq. (4. 2b), becomes 
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(4.4) 

(4.5) 

(4.6) 

(4.7) 

mv + urn = mcp' !:!... - VV, 
2 

which by virtue of Eqs. (4. 5) and (4.7) yields 

v - ;pt = - (!)VV, 

e+<p/2.!!:.-. (e-<P/2 dx) = - (~) VV. 
dt dt mo 

Finally, 

m e-<p/2 .!!:.-. (e-<p/2 dx) = - V V. 
o dt dt 

If we define a new time variable, .\, by 

d d - = e-<p/2-
d.\ dt' 

t .\=J dte<p(t)/2, 
o 

then the equation of motion reduces to the form 

d2x m -=-VV. o d.\2 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4. 12) 

Thus, in terms of the new time coordinate .\, the 
equation of motion reduces to that of a constant mass 
moving in the external field, the effect of the inertial 
potential cp serving to renormalize the mass and scale 
the time coordinate. But the mass mo is not the original 
mass m l of the particle. It is the mass after the par
ticle has "adjusted" to the potential V. 

In the nonrelativistic theory, one can choose the time 
dependence m( t), by adjusting the function f( cp) in Eq. 
(4.3). After the particle has reached its final mass mo' 
the potential cp vanishes. Then 

d.\(t -) 00) -) dt, (4. 13) 

and 

H(t) -) mo + tmo (:) 2 + V(x) = mo + E, (4.14) 

so that the energy asymptotically becomes constant. 
Furthermore, if one solves for the explicit time depen
dence of H, one finds 

H• iJcp ,. 
= mar = - mcpcp = mcp, (4. 15) 

from Eqs. (2.17) and (4. 2d), and then Eq. (4. 7) for m 
gives 

Since at large times cp -) 0, and rn -) mo' comparison 
with Eq. (4. 14) shows that 

C = £. (4.17) 

The relationship between the initial mass m l and the 
final mass mo is determined by chOOSing the initial 
value cp(O). Nonrelativistically this is arbitrary, and one 
is not forced to choose rno and m l to differ by the bind
ing energy. One can only say that this is consistent, 
rather than necessary. Only in a detailed theory of 
interacting particles could the relationship be proven. 

The subject of binding energy is closely related to 
that of self energy, and we might expect that the intro
duction of variable masses can give new insight into the 
question of the self mass of classical particles. We shall 
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not pursue this question here, except to note one inter
esting point. If one assumes that the force V(x} is really 
of the form V(x(t)), that is, that it acts at the position of 
the particle at time t, then the equation of motion Eq. 
(4. 2b) will become, instead of Eq. (4. 12). 

d 2x 
mo -2 = -VV(x(t)) = - VV(X(A + to» = F(A + to)' 

dA (4.18) 

which, for short to' becomes 

(4.19) 

Thus the change from t to A actually produces an effect 
equivalent to preacceleration and yields an equation of 
motion identical to the classical electromagnetic one 
with radiative reaction, with the identification 

m t ~ m (~)= ~ = (~) ~ . o 0 0 moY Y 3 c3 
(4.20) 

Here the parameter y, which is effectively the level 
width, would have to be proportional to t!.., the level shift, 
for electromagnetic radiation. The important point is 
that the acausal effects due to the third derivative occur 
in the variable A, but are completely absent in terms of 
the laboratory time t, where the equation of motion is 
Eq. (4. 2b). While the physical significance of such a pro
cedure is not clear, it is one of the more intriguing 
features of the whole variable mass formalism that there 
exist new concepts and thus one has the freedom to re
interpret old results of classical physics. 

5. THE TWO-BODY PROBLEM 

Only a limited insight into the question of binding 
energy can be gained by considering external forces, 
for it is only in the mutual effect of interacting particles 
on each other that the binding mechanism fully reveals 
itself. However, without tackling the problem in complete 
generality, we can make some meanirigful statements 
about interacting systems in the lowest approximation. 

A possible parametrization of the two-body problem 
was suggested in GI. For two particles, we have the 
set of coordinates qi = (r l' TI' r 2 , T 2 ) and the corres
ponding momenta Pi = (PI' ml' P2' m 2 ), and the indepen
dent variable t. If we introduce center of mass and 
relative coordinates, 

(mlrl + m 2r 2 ) 
R = , r = r l - r 2 , 

(m l + m 2 ) 
(5. I) 

then we have the difficulty that the Poisson brackets do 
not behave simply; for example, 

(
aR dTl aR aTl] 

{R, Tl}=:B ------ '" O. 
i aqi ap i ap i aqi 

(5.2) 

Nonetheless, one can introduce a set of canonical variables 
satisfying 

(5.3) 

by defining 

(mlr l + m 2 r 2 ) 
R= , 

M 
(5.4a) 
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(5.4b) 

(5.4c) 

-(ml - m 2) 
0= _ 

2m 
(5.4d) 

Because of its nonlinearity, the gauge condition would 
have to be solved from the full field theory to be inter
preted correctly. However, if the two particles are con
sidered to be close together, so that 

Irl « IRI, 

and I r I is also much smaller than the distance between 
rl or r 2 and any other particles around, then one can 
write an approximate form of the gauge condition. We 
assume 

cp(rl) ~ cp(r2 ) R: cp(R). 

Then the gauge condition, Eq. (4. 3), becomes 

mlTI = mItcp + mJ(cp) - ~ml J VI' dr1 , 

Similarly, 

m 2 T 2 = m 2tcp + mif(cp) - ~m2 J V 2 ' dr2 

Using the fact that 

Pl'drl +p2'dr2 =P'dR+p'dr, 

we can add Eqs. (5. 6) and (5,7) to get 

MT = Mtcp + Mf(cp} -~M JV'dR - ~/-L J v'dr, 

(5.5) 

(5,6) 

(5.7) 

(5.8) 

(5.9) 

where V == R, v == r, and /-L == m l m 21 M. In this approx
imation, then, cp depends only on T, and not on K. One 
would have to assume cp(r l ) '" cp(r2 ) to obtain a K de
pendence. 

Since there is no K dependence in the problem, it 
follows that 0 is a constant of the motion. This is 
equivalent to the statement 

(5.10) 

which implies that all mass ratios, such as mIl M and 
m21 M, remain constant. The equations of motion for T I 

and T 2 will still be given by Eq. (4. 2c), so we may write 

mlT l = m l + mlCP - m I v?/2, 
(5.11) 

Adding these equations, dividing by M, and remembering 
that mass ratios are constants, we obtain 

. p2 p2 
T = 1 + cp------

2M2 2/-LM 

= 1 + cp - W2 - G~) v 2
, (5. 12) 

This is the equation of motion for T. 

If the Lagrangian for the problem is taken to be 

L = ml(Tl - 1 + v~/2) + m 2 (T2 - 1 + V~/2} 
- Mcp - V(r} - U(R}, (5. 13) 

where the two particles are bound together by a non
gravitational potential V(r) and are acted upon by an 
external potential U (which we consider as acting only 
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on the center of mass of the pair), then the Hamiltonian 
will be 

H= m 1T1 + m 2T2 +PJ.·v 1 +P2'v2-L 

= M + p2 + p2 + Mcp + V + U. 
2M 2/-1 

Note that from Eq. (5. 9) we have 

cp == cp(R,r, T, t,~) 

only. The equations of motion are 

. acp - M I 

M == - M aT = - cp, 

6 == 0, 

T == 1 - ;;2 - :/-122 (:;) + cp, 

p == - MV RCP - V RU, 

p==-MVrcp-VrV. 

From Eqs. (5. 4c) and (5. 4d), we have 

IJ. == tM(1 - 462 ), 

so that Eq. (5. 16c) reduces to Eq. (5.12). 

From the gauge condition, Eq. (5. 9), we find 

a f. a -) 1 cp' == o~ = \t + a~ - , 

V 
,V 

RCP == cp 2' 

VrCP = (E)cplf· 

(5.14) 

(5.15) 

(5. 16a) 

(5. 16b) 

(5. 16c) 

(5. 16d) 

(5. 16e) 

(5. 17) 

(5. 18) 

(5. 19) 

(5.20) 

Also, comparing Eq. (5.12) to the time derivative of 
Eq. (5.9), 

T == cp + t;P +(icp) ip - W2 - (2~) v2 

= cP + lL _ .! V2 _ (-13:...) v2 
cp' z 2M' 

(5.21) 

we see that 

ip ::: cp', (5.22) 

as before, which implies from Eq. (5. 16a) that 

M m 1 m 2 -::: -- == --::: e-cp(t). 
Mo mlo m20 

(5.23) 

The equation of motion for P, Eq. (5. 16d), becomes 

(MY)' == - MipV - V U 2 R , (5.24) 

which is solved exactly as in the previous section, by 
Eq. (4. 8), and becomes 

(d2R) Mo -- :::-VRU, 
d>..2 

(5.25) 

The equation for p, Eq. (5. 16e), becomes 
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(5.26) 

In these equations it is the approximation CPl ~ CP2' 
and also U(r l' r 2) ~ U(R), which eliminates the K depen
dence. Since the M(t) dependence in this approximation 
cannot distinguish between the effect of the two forces 
V and U, and since 

(5.27) 

where € Rand € r are the energies of the two forces sep
arately, it follows that the change in mass is the cumu
lative effect of the binding energies of both forces 
separately. 

However, this crude approximation is sufficient to 
show how important the inclusion of binding energy can 
be. For example, if V(r) is a very strong electromag
netic attraction, whose binding energy contributes a 
considerable part of the total mass, while U(R) is a very 
weak coupling of the system to an external field, then the 
total binding energy is essentially that due to V. So the 
attraction to U is determined by the actual energy of the 
system bound by V, not by the free particle rest masses 
of m 1 and »'1 2 ' For the case where U is gravitational 
this is crucial, as the actual force between the pair of 
particles and the rest of the universe will be approxi
mately that of one composite particle of the appropriate 
mass, including binding. 

6. A CANONICAL TRANSFORMATION 

We shall perform a canonical transformation on our 
system which will replace T and m by a new set of 
variables, which will both be constants of the motion. 
These variables will be most useful in a discussion of 
the Schrodinger equation for variable mass particles, 
but even in the classical case they provide a simple 
characterization of the solutions of the Hamiltonian. 

Consider the Hamiltonian of Sec. 4, of a particle in a 
nongravitational external field, Eq. (4.1). Look at the 
variable z, defined as 

where f(cp) is the same function that appears in the 
gauge condition, Eq. (4. 3). The derivatives of z are 

For the Significance of z, take i == dz/ dt, 

i ::: ~; + (~~) ip ::: e-cp(1 - :/) = 0 

(6.2) 

(6.3) 

along a solution to the equations of motion. Since z = 
const (= zo) implies cp' ::: ip, it also implies 

m::: m e-cp(tli • (6.4) 
o • ='0 

Another way to see this is to differentiate cP along 

(acp) (oz) /(oz\ ,. _ dcp \Tt .::: - at cp acp) t ::: cp = cp = dt' (6.5) 

which implies that along z = zO' as t varies cp will vary 
as a solution to the equation of motion, Le., 
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cp(x, T, t) I nr = cp(x(t), T(t), t) = cp(t). 
- 0 

(6.6) 

We can now make a canonical transformation to re
place T by z, so that the variables of the problem change 
from (x, T, t) to (x, z, t). This is done by introducing a 
new set of variables (xv Pv T l' m 1 ) through the gener
ating function4 F(x, p v T, m 1)' Then 

of of 
T1 =--, xl =--, 

om 1 oP1 
of of 

m=-, P=-, 
aT ox 

of 
H1 =H+-at. 

IT we choose 

F = - m 1z + Pl' x, 

where 

Z = z(cp(x, T, t), t), 

then 

Also 

m = of = (OF) (oz) = _ m (OZ)cpl = m e-<p, 
aT oz aT. 1 ocp 1 

so that 

m 1 = mo' 

The new momentum is determined by 

(6.7) 

(6.8) 

(6.9) 

(6. 10) 

(6.11) 

(6.12) 

of (OZ) _ vcp P = - = P1 - m 1 - vcp = P1 + m 1e <P-, 
ox acp cp' (6. 13) 

P _ P _ mv(x) 
1 - 2' 

The new Hamiltonian becomes 

H1 = H - mo (oz) = H _ mo (az .Joz
) (ocp\ ) 

at ",T at '\oql. otl ",T 

= H - m - mcp = ~ + V 
2m 

(6. 14) 

where cp = cp(x, z, t). We can now check the equations of 
motion. For example, 

m1 = - (00:1)= - [:~ - p·t] (~:) = o. 

Similarly, 

i = oH = O. 
am 1 

(6.15) 

(6.16) 

IT it is desired, one can eliminate the x dependence in 
the kinetic energy term by another canonical transforma
tion similar to a gauge change in electrodynamics. 
Since mo and z are constant, one can treat them as such 
and no longer consider them as variables in the 
problem. Introduce the generating function 

F(x,P2) = P2'x - mo J" dxe-<p(",zo,t)· v(x). (6.17) 
2 

Then 
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(6. 18) 

and 

P2 = p. (6. 19) 

Along z = zo' we have cp = cp(t) alone, from Eq. (6. 5) so 
that we can actually remove it from the integral in 
Eq. (6.17). Then 

of J" H2 =H1 +-=H1 + moe-<pip dx·v(x)/2. 
at 

(6.20) 

Finally, let us look at the Simple equation of motion 
in terms of the variable x, defined by Eq. (4.11), which 
clearly can be derived from the Hamiltonian 

p~ 
H3 = - + V(x), 

2mo 

where 
dx 

P3 = mo-· 
dX 

(6.21) 

(6.22) 

The natural question is how this Hamiltonian is related 
to the original Hamiltonian H, or its equivalents, H 1 and 
H 2 • The surprising answer is that the transformation 
from H to H 3 is not canonical. This can be seen from 
the fact that we are seeking a transformation from the 
variables (x, P) to the variables (x, P3) where 

P3 = (:~) p = e-<p/2p. (6.23) 

Now 

J P3' dx = J e-<p/2p' dx ;c I p' dx, (6.24) 

so that the transformation does not conserve area in 
phase space, and so is not canonical. Connected to this 
situation is the fact that the potential cp is not really a 
local function, as it depends on the path-dependent 
integral I V' dx . 

APPENDIX: THE DECAY RED SHIFT 

The purpose of this appendix is to discuss more fully 
the decay red shift of Sec. 3. This effect predicts that a 
clock at rest in an unstable coordinate system (e.g., a 
decaying particle) will run at a different rate from one 
at rest at the same point in a stable coordinate system. 
So the variables of position and velocity are no longer 
sufficient to determine the rate of a clock-one must 
also characterize its stability. 

This surprising result arises independently of the 
detailed nature of our theory; any theory that attempts 
to make the mass m, and proper time T, into independent 
variables will of necessity produce such an effect. This 
is because, by its very nature as a dynamical variable, 
the mass will be changed by a T-dependent force, in the 
same was as momentum is changed by ordinary spatial 
forces. And T-dependent potentials will effect the rate 
of clocks just as x-dependent gravitational potentials 
will. 

While these results are inevitable in such a theory, 
even for point particles, nonetheless it is possible to 
render them less strange by considering models of 
decaying systems in conventional relativity. In that 
case, the structure of the decaying system actually 
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produces an effect equivalent to the decay red shift, 
because of the time dilatation effects on the various 
components of the system. We shall analyze this effect 
and show that it is of the correct order of magnitude. 
What our theory proclaims is that this effect persists 
down to the limit of a point particle, and it is taken into 
account by the extra degrees of freedom, m and T. 

An analogous situation occurs in the case of the spin 
of a system. There one may classically discuss finite 
spinning systems, and take the limit of point particles 
which have no obvious internal structure and no moment 
of inertia, and yet one still finds that the spin effects 
persist and may still yield a completely nonclassical 
angular momentum. In our case it is the decay effects 
that persist even down to the point particle limit, giving 
rise to a nonclassical degree of freedom. 

In this appendix we shall first discuss such a con
ventional model of a decaying system. Next, since we 
claim that the decay mechanism is produced by an 
essentially gravitational interaction, albeit acting in 
quite a new role, it is amusing that we will be able to 
formulate a model from which the decay red shift is 
produced by an equivalence principle type of argument. 
And finally we shall indicate a possible astrophysical 
significance for the effect. 

A. Model of a decaying system 

In this section we will use conventional relativity (m 
and T are not degrees of freedom, and m is constant) in 
order to describe a model of a decaying system with 
internal structure. The energy of the system consists 
of the rest mass of the particles plus their kinetic and 
potential energies of interaction, which gradually dis
sipate away. 

Consider the following simple example. Two particles 
of mass m 1 and m2 are bound by a covariant damped 
harmonic oscillator potential, their mutual radiation 
being the source of the damping. The initial energy of 
the system is Me2 + E"o (M == m 1 + m 2 ), and the final 
energy is Me2 • The Lagrangian for such a system is 

£ = J LdA, 

L = (im1u~ + im2u~ - tk(x1 - x2)2)eY~ 

where 

x~ == (xl' iet), 

dxf 
uCi.---

1 - dA ' 

xq == (x2' iet), 

(A.1) 

(A. 2) 

and k and yare constants. For the moment we leave the 
parameter A unspecified, except that it must be an in
variant. 

The equations of motion are 

du~ 
m l - + m1Yu~ + k(x 1 - x 2)oc = 0, 

dA 

dU2 
m 2-- + m 2yuq + k(x2 - xl)oc = O. 

dA 

(A.3) 

One can then introduce the center of mass and relative 
coordinates, 

Roc = (m1)xa +(m2) xCI. 
M 1 M 2' 

(A.4) 
rOC = x~ - xq. 
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In these coordinates 

R Ci. = (R, ict), 

rOC = (r, iO), 

and 
d 2rOC d:Ya. 

R == const == 0, 

I.J.-- + u.y-- + kra. == 0, 
dX2 dX 

(A. 5) 

(A.6) 

where u. is the reduced mass, m1 m21 M. The solution 
as a function of ~ is 

(A.7) 

To complete the model, one must define the parameter 
X. For example, one may choose 

dRa. 
dAi == -dRa.--, 

c2 

giving 

A L == t, 

(A. 8) 

(A.9) 

the laboratory time. In this case the system has a con
stant frequency w l in the laboratory. One might also 
take for A the "center of time" of the two particles, 

In this case, if m 1 and m 2 are equal, then 

dAc== :iT1 == dT2 , 

(A. 10) 

(A. H) 

and the frequency will be constant to an observer sitting 
on either of the particles. 

However, in either case, the relationship between the 
"center of time" coordinate and the laboratory time 
will be given by (in the limit VI' V2 « C), 

[(m 1) ( V~) 1/2 (m2) ( V~) l/2l dAc == dt - 1- - + - 1- - J 
,M c2 M e2 

(A. 12) 

If we integrate over a cycle, we have, since the average 
kinetic energy for an oscillator is half the total energy, 

dAc ~ dt[1- E"/2Me2 ]. 

For a slowly damped oscillator, 

E" == E"oe- rt , 

so that 

dAc ~ dt [1- €oe-rtJ"'. 
2Mc 2 

Integrating over a long time one has 

EO 
A - t----'> - ---, 

c t_OO 2Mcry 

(A. 13) 

(A. 14) 

(A. 15) 

(A. 16) 

which is the same order of magnitude as the point par
ticle calculation of our theory, Eq. (3.15), (with the 
notational changes E"o -+ A, Y -+ A, e -+ 1). 

If the OSCillating particles contained an actual clock 
(such as a precessing spin) one could actually measure 
the time loss between the laboratory observer, and the 
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decaying particle system. Also it is clear that the 
frequency as seen by the laboratory observer is less 
than that seen by an observer moving with either of the 
particles (since the period is greater). 

It should be evident from this example that the source 
of the red shift between a laboratory observer and one 
using the center of time coordinate of the decaying sys
tem has nothing to do with the harmonic oscillator 
nature of the force. Rather it is due to the time dilation 
effect, because the system has structure, and internal 
motion,and any model giving the system a structure 
would produce the same order of magnitude time lag 
between a clock on the decaying system and one on a 
stable particle in the laboratory. 

By making m and T into dynamical variables, one is 
really asserting that a decaying particle has a micro
scopic structure, and even in the limit where the decay
ing system reduces down to a point particle, the effects 
of this structure remain, in the form of the decay red 
shift. The introduction of m and T as dynamical variab
les enables one to take this average effective structure 
into account, for a point particle, independently of any 
detailed classical type of model. 

B. The equivalence principle and decaying states 

In our theory, the mass of a decaying particle changes 
through a gravitational interaction, though it is the T 

dependence rather than the conventional x dependence 
that causes the decay. Nonetheless, it is possible to in
troduce a model that illustrates the connection between 
this gravitational field and the equivalence prinCiple. 

Consider the following classical model of a decaying 
system. The system continuously emits photons of fre
quency Wo in its rest frame. In the laboratory the sys
tem has mass m, velocity v, and in time dt it emits dN 
photons, and loses mass dIJ.( == - dm). 

We will assume that the photons come off backwards, 
and the particle accelerates as it loses mass. Momen
tum conservation in the laboratory frame gives 

(m - dIJ.){vy + d(vy)} -likdN == mvy, 

- dIJ.vy + my3 dv - dNlik == O. 

Energy conservation gives 

(m - dJ.L) c 2 (y + dy) + dNli W == mc2y, 

my3 dv == dIJ.V"y + dNlik. 

Combining Eqs. (A. 17) and (A. 18) gives 

my3 dv 
-- ==dIJ.. 

c 

(A. 17) 

(A. 18) 

(A. 19) 

If one transforms the 4-acceleration, d2xa./ dT2, to the 
rest frame of the decaying system, one obtains 

d
2
xa. (2 ·0) = ( ·0) -- = "y a, l - a, l , 

dT2 

where a == d2x/dt2, and dt = ydT. So 

madT = cdlJ" 

and 
dm __ dp. __ ma 
dT - dT - C 

(A. 20) 

(A. 21) 

(A. 22) 

Comparison with Eq. (3. 7) leads one to introduce the· 
potential (good to lowest order) 
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cp = c J adT, ca = acp. 
aT 

One can also obtain from Eqs. (A. 17) and (A. 18) 

(A. 23) 

dp.c2 = dN1ik f(1 + (3)J 1/2 = dNlik (A. 24) 
L(1 - (3) 0' 

where ko = wo/ c is the wave number in the rest frame 
of the decaying system, rather than the laboratory, and 
(3 = vic. 

To an observer behind the accelerating particle, at 
rest in the laboratory, k = ko[(1 - (3)/(1 + (3})1/2, and as 
the particle accelerates from {3 to {3 + d{3, we have 

dk = - ko [(1 - {3)] 1/2 y 2d(3 
(1 + (3) 

= - k-y 2d(3 = - kadT/c. 

Thus 

liw lik adT 
- =:-:=---

w k c 

For the period T, 

liT liw adr li cp T ==-~ =-c- =~, 

so that 

(T + liT) 

T 
1 + licp 
=~ 

(A. 25) 

(A. 26) 

(A. 27) 

(A. 28) 

which is consistent with the red shift formula for the 
decaying particle, Eq. (3.5). 

To an observer at rest on the accelerating system, 
his acceleration is a. By slowly, continuously varying 
the direction of emiSSion of the photons, he need not 
move in a straight line, so that a is a function of his 
proper time T, rather than pOSition. The rate at which 
he decays is 

dm = _ rna = _(m) acp, 
dT c c2 aT 

(A. 29) 

the "equation of motion" for m, and the radiation he 
has emitted at a time dT previously, looks red-shifted 
to him by an amount given by Eq. (A. 25) or (A. 28). So 
we see that an observer moving with the decaying sys
tem can attribute his acceleration to aT-dependent 
gravitational field, which regulates both his decay rate 
and the red shift. 

c. A possible astrophysical consequence 

The existence of a decay red shift should certainly 
be detectable in the laboratory, if it exists. We shall 
not attempt to discuss this problem here, however, but 
will merely note that under certain conditions the decay 
red shift could have a definite astrophysical significance. 

In Sec. 5, we showed that there exists a "center of 
time" coordinate similar to the center of mass coordin
ate. We also showed that for a strongly interacting sys
tem the effect on an outside observer could be approxi
mately characterized by this variable. In other words, 
in the same way as a strongly interacting system 
appears to an outside observer as an approximate point 
source, located at the center of mass of the system, 
so also the "proper time interaction" is approximately 
local, and is characterized by the center of time 
variable. 
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Thus a large accumulation of particles, like a star, 
ought to appear to an observer far away as a point 
mass, characterized by the variables R, the center of 
mass, and T, the center of time. Even in our example 
of part A of this appendix, the decay red shift appeared 
between the center of time and laboratory time 
variables. 

Therefore in a stellar system which we know must 
be strongly interacting, such as a quasar, it is quite 
possible that the T-dependent interaction between the 
components of the system will appear to a distant 
observer, to a first approximation, as a single massive 
particle with Rand T as the relevant degrees of free
dom. In this case the entire massive decaying object 
would behave as a simple point source, and one should 
see a decay red shift, much as in the simple example 
of Sec. 3, for which we constructed a conventional ex
tended model in part A of this appendix. 

Numerically, if as much as half the mass of the quasar 
were to rapidly radiate away exponentially, then in Eq. 
(3.9) we would have t. = mo' Then 

cp(t) = -In (1 +(,::) e-r t
) , (A. 30) 

and for short times ")It « 1, 

t = 1 + cp ::::: 1 - 1 - In2. (A. 31) 

Then, because of the slowing up of proper time in the 
decaying quasar, there would be an additional "decay 
red shift" 

. X 1 
T=-=---=1-ln2 

X' (1+z) , 
(A. 32) 

where z is the red shift parameter (X' - x)/x and equals 
2.26 in our example. 

Since this shift is of the order of observed red shifts 
in quasars, it is conceivable that the decay red shift 
might contribute substantially to the total red shift 
observed in such objects, so that the cosmological red 
shift might be smaller than otherwise expected. This 
in turn would imply that the quasar was closer than pre
dicted by the cosmological red shift alone, and so the 
quasar would not need to radiate energy at so prodigious 
a rate. An important difference between the decay and 
cosmological red shift is that over the lifetime 1/ y of 
the decay, the decay red shift would decrease and finally 
disappear, while the cosmological red shift would 
scarcely change (and increase over cosmological 
times). 
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There is of course no independent evidence as yet 
for the existence of the decay red shift. However, we 
will close by pointing out two items of information 
which tend to raise a question as to whether the quasar 
red shifts are really cosmological, as has been gen
erally accepted, or whether they are in fact caused, at 
least in part, by dynamical processes peculiar to the 
quasar phenomenon itself, 

First, Arp has reported numerous data supporting 
the possibility that noncosmological red shifts exist. 5,6 

He has discovered evidence in several cases of quasars 
with very different red'shifts that seem to be associated 
in the same physical cluster. In one case there actually 
appears to be a filament of matter connecting two 
quasars with different red shifts. If these cases are 
confirmed, it would imply the existence of a red shift 
which is neither cosmological nor gravitational in ori
gin, but rather an intrinsic dynamical feature of the 
quasar process. 

Second, the apparent absence of large quasar red shifts 
seems to imply a physical cutoff. This has been inter
preted cosmologically as showing that astronomers are 
seeing the "edge of the universe." But in fact, in the 
absence of corroborative evidence, an equally likely 
explanation would be that the order of magnitude of 
quasar red shifts is determined by the dynamics of the 
quasar mechanism, which somehow provides for a max
imum possible red shift. 

'The motivation and formalism of the theory are explained 
in D, M. Greenberger, 1. Math. Phys. 11,2329 (1970). Some 
physical consequences of the theory, especially in regard to 
the uncertainty principle, are discussed in D. M. Greenberger, 
1. Math. Phys. 11, 2341 (1970). We shall refer to these papers 
as GI and GIl, respectively. 

lD. M. Greenberger, 1. Math. Phys. 15,406 (1974). 
3The gauge invariance of the theory of GI was discussed in D.M. 
Greenberger, Ann. Phys. (N.Y.) 25, 290 (1963). The classic 
papers on the subject are C. N. Yang and R. Mills, Phys. Rev. 
96, 191 (1954), and R. Utiyama, Phys. Rev. 101, 1597 (1956). 

'See, for example, H. Goldstein, Classical Mechanics (Addison-
Wesley, Cambridge, Mass., 1950), Chap. 8. We are using Goldstein's 
F2 type of generating function. 

5H. Arp, Science 174, 1189 (1971). A later report will appear in 
the proceedings of the Sixth Texas Symposium on Relativistic 
Astrophysics, New York, December 1972, to be published by 
the New York Academy of Science. 

"The suggestion that proper time be considered a dynamical 
variable was made in a different context by E.A. Schucking 
and E. L. Spiegel, Comments Astrophys. Space Phys. 2, 121 
( 1970). 
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Using a formalism that includes particles with indefmite and variable masses, we can create a much 
richer set of states than in conventional quantum mechanics. For example. in a gravitational field the 
equivalence principle implies that the motion of a particle is independent of the mass. Thus it is 
possible to create physical states with large am but very small a v and ax, so that the trajectory of 
a particle is well determined, while the ap . ax uncertainty relation is satisfied. We also provide a 
quantitative description of wavepackets with arbitrary distributions in momentum and mass (or 
alternatively velocity and mass) and discuss a simple diffraction slit experiment as an example of 
their physical propagation. The Schrodinger equation is solved for a decaying particle at rest. It is 
also shown that Galilean invariance plays a natural and cohesive role within the variable mass 
formalism, unlike the case in conventional quantum mechanics where the existence of multiple mass 
states would violate Galilean invariance. 

1. INTRODUCTION 

It has been shown that one can develop a theory of 
particles with variable mass. 1 With such a theory one 
can develop a classical description of decaying particles, 
and the theory also has the property that it includes the 
binding energy of a particle as part of its inertia. One 
can also extend the theory to include quantum mechani
cal effects. The mass m, and proper time T, of a particle 
appear as conjugate dynamical variables in the theory, 
which is a direct extension of the classical canonical 
formalism, and so one would expect them to obey an un
certainty relation. It was shown in GIl that this is indeed 
the case and that the existence of uncertainty relations 
between p and x, and E and t, necessitate one of the form 

(1. 1) 

(we assume throughout this paper that c == 1), and seve
ral examples of this relation are given there. 

In Sec. 2 we indicate how it is possible to create wave
packets consisting of coherent superpositions of differ
ent masses, both experimentally and within the variable 
mass formalism. The motion must be consistent with 
the relations 

t:.p . t:.x "" n, p == mv, (1. 2) 

and yet there is still much more freedom available than 
in the conventional theory, where m is a fixed parameter, 
and t:.p means mt:.v. Specifically it is possible to have a 
situation where t:.m is large and t:.v is small, so that 

(1. 3) 

While this situation does not come about in conventional 
nonrelativistic quantum theory, it can actually occur in 
two very important Situations, and implies that one can 
devise an experimental arrangement where both t:.x and 
t:.vare small, and yet have Eq. (1. 2) satisfied, because 
t:.m is large. Furthermore, if t:.x and t:.v are both small, 
the trajectory of the particle is well known, a result 
which is not possible in conventional quantum theory. 

First, such a situation can occur when a particle 
moves in an external gravitational field. Then the equi
valence principle implies that all particles accelerate at 
the same rate and the lack of knowledge of m does not 
affect the motion of the particle. However, because 

dT == (g~vx~xv)1!2 dt ~ [1 + cp(x) - i v2]dt, (1. 4) 

where cp is the gravitational potential, it follows that an 
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accurate knowledge of v and x allows one to calculate T 

very accurately, where T is the proper time as read by a 
clock at rest on the particle. So one can achieve, in a 
gravitational field, a very accurate knowledge of x and v, 
and therefore of the trajectory, and of T, without knOwing 
anything at all about the mass of the particle. 

The second such situation occurs when m itself is 
very large, and also t:. m is very large. This is the situa
tion normally encountered in a classical reference 
frame. By having m large, the laboratory apparatus can 
absorb momentum transfers from the system being 
studied without effectively being accelerated itself, and 
so its trajectory is accurately known. A Similar case 
occurs when a classical particle is subject to a con
straint, leaving it free to move in one direction (like a 
bead on a wire). Then, if the constraint is severe, so 
that AX and t:.v are small, t:.m will be large because of 
the large uncontrollable energy, and therefore momen
tum, transfers between the particle and the constraint. 

The quantitative description of wavepackets for 
variable mass particles is carried out in Sec. 3. Of 
course, there are a wide range of possibilities between 
the cases where t:.p is due solely to t:.v, and where it is 
due solely to t:.m, although the extremes are more in
teresting. In order to point out the physical difference 
between the extreme cases, in Sec. 4 a slit experiment 
is analyzed in some detail. 

In Sec. 5 we discuss the Schrodinger equation for a 
decaying particle at rest, and show its relation to the 
classical problem of decaying particle within the 
formalism. 

In Sec. 6 we analyze the question of Galilean invari
ance of the theory. In conventional nonrelativistic quan
tum mechanics, one cannot have a superposition of dif
ferent masses as it would violate Galilean invariance. 2 

One sees this by transforming a free particle into a 
series of moving reference frames and finally back to 
the original frame. In the process, the wavefunctions 
belonging to particles of different masses pick up differ
ent phase factors. This would amount to having caused 
an observable effect through a series of unobservable 
transformations, and so one imposes on the system a 
superselection rule to eliminate superpositions of dif
ferent masses, in order to avoid the problem. 

However, it happens that this phase difference acquired 
by particles of different masses in the transformation to 
a moving frame is in our theory proportional to the 
proper time difference between the two frames. While 
in conventional nonrelativistic theories the proper time 
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has no place, in our variable mass formulation it plays 
a vital role. Thus the transformation to a moving refer
ence frame and back is in fact quite observable, in that 
it leaves a measurable imprint on the system, in the 
form of the "twin paradox" effect of differential aging 
between the two systems, and the phase difference be
tween different particles is just a measure of this real 
phenomenon. So the variable mass theory actually de
mands this phase difference and is consistent with Gali
lean invariance. (This phase difference is actually 
required by the uncertainty prinCiple, for it is this phase 
that is responsible for "washing out" interference pat
terns caused by different proper times, when an accu
rate mass measurement is made.) Finally, we use the 
Galilean invariance of the theory to solve the Schrodinger 
equation for a free indefinite mass particle in motion. 

2. PARTICLE DISTRIBUTIONS WITH INDEFINITE 
MASS AND VELOCITY 

Our formalism enables us to construct wavepackets of 
indefinite mass. In conventional quantum theory one can 
do so relativistically, an example being the coherent 
combination of the Kl and K2 particles, whose rest 
masses differ by about 10-5 eV, or about one part in 
1014• However, in the conventional nonrelativistic theory 
there is a total dichotomy between mass and binding 
energy and one cannot superimpose different mass 
states. 

In our theory this artificial nonrelativistic distinction 
between rest energy and binding energy is not main
tained and so one can easily superimpose different mass 
wavepackets without destroying Galilean invariance. 
Furthermore, one can clearly trace the separate contri
butions to AP coming from Am and AV. 

Experimentally it is easy to create a beam of particles 
with a large Am. For example, in a high energy baryon
antibaryon collision large numbers of meson of assorted 
charges and energies are produced It is possible to 
sort out these mesons into a definite velocity distribu
tion without knowing their mass. From Newton's law, 

v(t) - v(O) = J (F/m)dt, (2. 1) 

and so a poor knowledge of m quickly transforms itself 
into a poor knowledge of v. However, there are two ways 
around this problem. 

The first is through gravitational forces, since then F 
is proportional to m, and the acceleration will be the 
same for all particles, whether Am is small or large. 
An example of the production of a velocity selected beam 
is given in Fig. lao By performing a time delay experi-

(A) (b) 

FIG. 1. Experimental velocity selectors. (a) Gravitational: Slit A is 
opened briefly, and to seconds later slit B is opened briefly. Then at 
the center of the beam at B, VX = L/lo, Vy = s/Io + ~ glo, independently 
of the mass of the particles in the beam. Even at the edges of the beam, 
the geometrical cutoff will be independent of the mass of the particles 
(except for quantum mechanical spreading effects, which can be mini
mized). (b) Nongravitational: The velocity at the center of the beam 
passing through B is v = eE/ H, independently of the mass of the par
ticles. However the velocity of particles at the outer edge of the beam 
at B will be mass dependent. 
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ment, so that the time of passage, to, is known, one can 
select a definite value of v" and v~ for the center of the 
beam, regardless of the mass of the particles. The dis
tribution of velocities around the center of the beam, as 
determined by geometry, will also be independent of the 
mass of the particles, classically. (Because of the quan
tum mechanical spread of the packet, after the initial 
slit, the velocity distribution at the second slit will have 
some mass dependence, which can be minimized.) 

A second method for selecting a velocity distribution 
is to have two equal and opposite velocity dependent 
nongravitational forces, for example those produced by 
an electric field perpen-dicular to a magnetic field, both 
perpendicular to the particle beam, as in Fig. lb. This 
procedure selects charged particles of a given velocity. 
As shown, the beam will be contaminated by neutral 
particles of all velOCities, an effect which could be 
easily eliminated by a slight effort. The disadvantage of 
this second technique is that only the center of the beam 
has the correct velocity, independently of the mass, 
while near the edges there will be some mass depen
dence even classically. A graVitational velOCity selector 
is free of this defect. 

The uncertainty in mass, besides contributing to an 
uncertainty in momentum, also must satisfy a relation
ship of the form of Eq. (1. 1). The proper time is the 
time that would be read on a clock fixed to the particle. 
The proper time may be uncertain because the particle 
has an uncertain velocity, or is subject to an uncertain 
gravitational potential, from Eq. (1. 4). This proper time 
uncertainty represents the inability of an observer fixed 
in the laboratory to read or calculate the time read by 
a clock on the particle, and as such is the inability to 
read, in one reference frame, a clock at rest in another 
frame- even though an observer moving with the clock in 
this other frame may be able to read it accurately. As 
such, it is not an uncertainty in time interval in one ref
erence frame, as is M. Several examples illustrating 
the meaning of AT are given in GIL 

One can obtain a more quantitative measure of the un
certainty in mass, velocity, and momentum. Our forma
lism is merely an extension of the usual canonical one, 
the principle difference being that there is an extra 
degree of freedom, T. The details of the formalism can 
be found in GI and Gill Proceeding analogously to con
ventional quantum mechaniCS, we can represent a par
ticle by the wavepacket 

I/I(X,T,t):::: (21T)-2 f d 3kdm a(k,m)e;(k'X-wttmd (2.2) 

where nonrelativistically 

p = nk == k (2.3) 

(we will assume n == 1, unless otherwise noted). In the 
special case where the distributions in mass and momen
ta are independent of each other 

(2.4) 

there exists a simple relationShip between the uncer
tainties in momentum, mass, and velocity, represented 
by the wavepacket. In that case, if one defines 

J.L == 11m, v = kp., (2. 5) 

then one has 

v = kli, 
(AV)2/:;;2 = (Ak)2/k2 + (AJ,L)2/jL2 + (Ak)2(AJ,L)2/k2~2 

'(2.6) 
where the bar denotes the expectation value. 
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This result simplifies even further if the distribution 
is narrow, 

(~k)2 « k2, 

Then one has 

-- -
(~m)2 « m 2• 

and 

ii ~ (1/1ii)(1 + (~m)2/m2), 

(~1-t)2 ~ (~m)2lm4, 

V I'::l {k/m)(l + (a.m)2/m2), 

(a.v)2/V2 I'::l (~k)2/k2 + (~m)2/m2. 

(2.7) 

(2.8) 

(2.9) 

Of course, if the distributions in m and k are not indepen
dent, these conditions can be violated. For example, if 
v = yo, with ~v ::::: 0, then k ::::: mvo, and ~k ::::: vo~m. In 
this case a.k can be finite or infinite, depending on a.m, 
while a.v ::::: O. 

3. QUANTITATIVE DISCUSSION OF WAVEPACKETS 

We would like to analyze the physical behavior of the 
wavepacket of Eq. (2. 2), containing a distribution in both 
momentum and mass. The Simplest situation occurS 
when the distribution is peaked about some central value 
(ko, mo) and has a small spread in both k and m, so that 

(3.1) 

Then one may use the group velocity approximation, to 
find the behavior of the packet for x:::: j(t), T :;;:; jet). The 
canonical equations of motion, 

x ;:;;;; oH/op, T = oH/Om, (3.2) 

together with the fact that the distribution a(k, m) of Eq. 
(2. 4) is sharply peaked enable us to use the expansion 

w(k, m) == H(p, m)/n 
::= wo(ko, mol + vo(k - ko) + i o(m - mol, (3.3) 

where 

Vo == (ow/ok)o, TO:::: (ow/am)o. (3.4) 

so that the phase <p of the exponential of Eq. (2. 2) be
comes 

<p =:: ko • x - wot + moT + (k - ko) • (x - vot) 

+ (m - mo)(T - Tot). (3.5) 

Thus, if at t ::::: 0, the wavefunction has the form 

I/I(x, T, 0)::::: ei(kox+ mo T)I/I 1 (x) 1/12(T) , 

where 
1P1(x) (2lif3/2 J d 3k a1(k)e i (k-ko)'X, 

1P
2

(T) (21Trl/2 J dm a2(m) et(m-mo)r, 

then at time t it will have the form 

(3.6) 

(3.7) 

I/I(X,T,t) = ei(ko·x-wot+moT)l/Il( x- VOt)1/I2(T- TOt), 
(3.8) 

and it will obviously satisfy the x -- p and m - T uncer~ 
minty relations. 

As a special case, for a relativistic free particle, 
where 

w == (m 2 + k2)1/2, 
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we have 

Vo = (ow/ak)o = ko(ma + ka)-1/2, 

ko = movo'Yo, Yo = (1 - va)-1/2, 
(3. 10) 

and 

TO = (ow/om)o = mo(ma + kat1/2 = y'il = (1- v5)l!2, 
(3.11) 

Similarly, in the nonrelativistic limit 

w = m + k2/2m, (3. 12) 
and 

Vo :::: (aw/ok)o :::: kolmo, 
(3. 13) 

TO = {owlom)o = 1 - ky2ma == 1 - va/2. 

In writing these equations, no provision was made for 
the restriction m ;;;, O. It is not clear what role this res
triction plays in theoretical physics, including gravita
tional theory. It is formally equivalent to the restric
tion on T that it be analytic in the lower half-plane, but 
we shall generally not include it unless it seems neces
sary to do so. 

An instructive example, in the opposite extreme limit, 
is the case where ~m = co. We shall show that the for
malism permits the position and velocity to both be pre
cisely known, so that the particle has a perfectly local
ized trajectory. We have, in this case, 

v = VOl Av = a.x :::: ~T = 0, Ak :::: ~m ::::: CO. (3. 14) 

We assume for convenience a one-dimensional particle 
with a Dirac 6-function spatial wavefunction. The entire 
wavepacket has uniform velocity vO' Under these condi
tions T is completely determined, and so 

T :::: tlyo = t(l - v6)1/2, (3. 15) 

while the mass is totally unknown. At t = 0, we have 

1/1 (x, 00) = (211)-1 J dk e ikx , (3.16) 

and so at later times 

1/I(X,T,t) = (21T)-1 J dkei(kx-wt+md. (3, 17) 

Under the stated conditions, 

k = mvoyo, T = t/yo. 

w= (k2 + m 2)1/2 = klvo, 
(3. 18) 

so that 

1P(x, T, t) = (21Tr1 J dk e1k(x-tlvo+tlvoYP = 6(x- vot), 
(3. 19) 

It should be noted that this is the exact wavefunction for 
all time. Since a.v == 0, there will be no spreading of the 
wavepacket, unlike the usual case for particles with a 
definite mass. 

If one wants a packet with a controlled spread in velo
city, this can be obtained by using a correlated, rather 
than independent, spread in k and m. For example, in a 
distribution of the form 

(3.20) 

the function can be integrated first over k, where then 
the functions al and a 3 form a convolution giving the dis-
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tribution in m and v, or it can be integrated over v first, 
where it correlates the k and m behavior. 

As an example of Eq. (3. 20), we choose a2 to be a 0 
function centered about va' and a3 to be slowly varying. 
We take the case of a relativistic, one-dimensional 
particle, so that 

1/1 (x, T, f) == (271)-1 J dk (k2 + m2)-l/2 dm k1l2 al (k) 

a3«k/m) - voyo)exp[kx- (k2 + m 2)l/2t + mT] (3.21) 

where Yo == (1 - v~)-l/2. The extra kl/2 in the numerator 
is purely for convenience. Then one can perform the m 
integral by the method of steepest descent. Denoting the 
phase by cp 

cp == kx - (k2 + m 2)1/2 f + mT, (3.22) 

we must evaluate it at the stationary pOint m == m o, de
fined by 

mo == mo(k, T, f), 

According to this, 

(acp/am) m == O. 
o 

T - (aw/om)ot == T - mot(m~ + k 2)-1I2 == 0, 

mo == kf(T, f) == k((t2/72) - 1)-112. 

(3. 23) 

(3. 24) 

This equation is consistent with Eq. (3. 4). For each 
value of k, a best value of m, m o, or equivalently a best 
velocity is chosen. The range over which different m o' s 
contribute for a given k is determined by the function a3 • 

One can bring this out more clearly by introducing the 
velocity as an independent variable, V(T, f), using Eq. (3. 24), 

k == movy, I' == (1 - v2)-l/2, vI' == 1/ f(T, f), (3.25) 

so that 

T == (1 - v2)l/2 f. (3. 26) 

Then the function a3 in Eq. (3. 21) becomes 

a3«k/m) - voYo> == a3(vy - voYo) == 1/13(T - f/y) (3.27) 

and it can be taken out of the integral. The phase of Eq. 
(3.22) becomes, when expanded about m o, 

cp(k, T, f) == kx - w(mo, k) t + moT - ~(m - me? (o2w/am~) f, 

(3.28) 

The Gaussian integral over m then yields 

1/1 == [1/I3(T - f/Y)/(271tV)1/2] J dk al(k)ei(kX-w(mo.k)t+moT). 

(3.29) 
where v == V(T, t) from Eq. (3. 26). 

(bl 

FIG. 2. Diffraction through a slit. (a) For a beam component of mass 
m.,a minimum is determined by the conditiony = A •. The total wave
function is 61/1 •. (b) Determination of the amplitude. If the entire beam 
component along PR were in phase, the amplitude would be that of A •• 
If the phases at P and P' differ by i3., the amplitude will be that of 1/1 •• 
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Finally, by replacing mo by its value from Eq. (3. 25), 
the wavefunction becomes 

l/I == 1/1 3 (271tV)-l/2 J dk al (k) eik(x-vt) 

== (tv)-l/21/13(T- f/YO)l/I1(X- vt), 

where 1/11 is the Fourier transform of a1 and v is again 
V(T, t). We note that it would not be consistent to take 
1/1 3 to be a 0 function in this example, as then we could 
not have used the steepest descent technique. 

We see that one may construct wavepackets in m and 
T to any desired degree of sharpness consistent with the 
uncertainty principle, in complete analogy to wave
packets in k and x. 

4. A DIFFRACTION EXPERIMENT 

In order to point up more clearly the distinction be
tween a momentum distribution due to a coherent super
position of different masses, and one due to different 
velocity states of the same mass, we will analyze a 
simple diffraction pattern produced on a screen by a 
beam of particles passing through a slit. If the incident 
beam is considered to be approximately a plane wave, 
the resulting diffraction pattern will be as shown in Fig. 
2a. 

Assume that the incident beam has a unique velocity v, 
but is a coherent mixture of states of different mass, as 
described in the previous section. It may have been pro
duced by a high energy colliSion, and selected for velo
city, or it may simply be a coherent combination of many 
different spin states of a Single particle, precessing in a 
high magnetic field, separated by mass /),.m == J.LH. At any 
rate, we shall assume that the incident beam has some
how acquired a single nonrelativistic velocity v. The 
various components of the beam will have masses m n , 

momenta Pn == mnv, and wavelength 

(4. 1) 

If there is a screen placed a distance L from the slit, 
then for a given component of the beam, of mass m n , the 
amplitude of the wave a distance x from the center of 
the beam will be determined by the different phases pre
sent along the line pp' as the beam leaves the slit. If 
the beam at pI is out of phase with that at P by an angle 
f3 n , and the total amplitude of the in-phase beam PR is 
given by An' as measured along the arc ppl in Fig. 2b, 
then one can determine the wavefunction l/I n as in ele
mentary optics, 

1/1 n == e iBn/2(An sin{3/ 2)/ (f3/ 2) 

== i(An/ f3n)(1 - e iBn), (4.2) 

where 

Y/An == f3 n /271, sine == y/d, (4.3) 

or equivalently, 

(3 n == K n sine, (4.4) 

The wavefunction 1/1 n can be normalized to unity to de
termine An' 

(4.5) 

For a coherent mixture of many masses, one has 

(4.6) 
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In order to be able to carry through the calculation ex
plicitly, we assume for simplicity that there are N 
equally spaced states, where N » 1, so that 

mn = nm o, f3 n = nf3, f3 = K sinO, K = movd. (4.7) 

Then 

1/1 = (i/f3) '6 (a n A/n)(l - e inll ). (4.8) 
n 

Finally, for our particular problem we will choose 
(purely for calculational convenience) 

which makes 1/1 easy to evaluate, 

1/1 == (ia/f3) '6 (e 2nin!N - e in(B+211!N). 

(4.9) 

(4. 10) 

The first terms in Eq. (4. 10) sum to 0, and the second 
terms give 

I 1/112 = a2 sin2 (Nf3/2) ~ a2 sin2 (N f3/2) 
f32 sin2 (f3/2 + rr/N) ~ f32 sin2 (f3/2) , 

(4. 11) 

and therefore the wave pattern on the screen will have 
minima determined by 

Nf3/2 ~ Zrr, sine'" 0 '" 2rrZ/NK. (4. 12) 

Of course, only for our special choice of amplitudes, 
Eq. (4.9), will we have complete cancellation; however, 
it is characteristic that there will be large fluctuations 
in the intensity whose minima will be separated by this 
amount, 

A8 '" 2rr/NK. (4. 13) 

For incoherent states of different mass, one would 
have, instead of Eq. (4.6), 

(4. 14) 

and this would be governed by the envelope for 1/11' for 
which 

0'" 2rr/K, (4. 15) 

so that the pattern would be N times as large. 

So we see that the great difference between the two 
cases is that for the coherent superposition of different 
masses, 

AV/V '" AO ~ 2rr/NK, (4. 16) 

a very narrow spread, even though the momentum spread 
is still governed by the same uncertainty principle, 
where Ax ~ d, Ap '" NmAv, for the heavier components 
and 

AP Ax '" Nm Avd '" NmvAed '" 1. (4. 17) 

The general feature of the calculation is that a cohe
rent mass spread tends to sharpen the velocity distri
bution of the beam. Thus, for example, one would expect 
that for a very unstable particle with a large mass 
spread, like the p meson, the diffraction scattering off 
nucleons would be somewhat narrower in angular spread, 
than if the p were stable. 

5. THE SCHROOINGER EQUATION FOR A 
DECAYING PARTICLE 

From the wavepacket representation of a particle, Eq. 
(2. 2), it is apparent that the introduction of T as an inde-
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pendent variable implies that in T space there exists a 
mass operator (we temporarily set Ii '" 1), 

mop == (Ii/i) il/ilr. (5. 1) 

This allows one to immediately write a Schrodinger 
equation for a free particle, 

(5.2) 

In the presence of a gravitational field, in the vector 
gauge theory of GI and GIll, one makes the replacement 

il l1 ~ (il l1 - BI1 il/ilr), (5,3) 

and Eq. (5. 2) becomes (with pl1 = ihill1) 

-li2(il" - BIl il/ilT)(ill1 - BIlil/ilT) 1/1 = m~plj/. (5.4) 

In the nonrelativistic limit, we have 

il l1 - BIl a/aT ~ (il/at + cpa/aT, \7), 
(5. 5) 

(mop + p2/2mop) 1/1 + V(x) 1/1 = - (Ii/i) illj//at - cpmopl/l. 

In Eq. (5. 5) we have included, besides a gravitational 
potential cp(x, T, f), also an external nongravitational 
potential, V(x). This equation can also be written 

(mop + ~p2 + mopcpmop)1/I =- (Ii/i)mopolj//ot, (5.6) 

or 

[02/0T2 + ~ \7 2 + (il/ilr)(cpil/oT) + (i/1i) V O/OT]I/I 

= - (il 2/iltilr) 1/1. (5.7) 

The potential BI1 , or cp, is subject to the gauge condition 
(see GIll) 

a
ll
BI1- BIl ilBI1/or = 0 ~ ilcp/af + cp ilcp/or = O. (5.8) 

It was shown in GIll that when a particle decays, it 
must be coupled to a r- dependent gravitational field. 
The gravitational field does not cause the decay, but, by 
coupling to the inertia of the particle, it produces the 
necessary change in mass. 

In this section we will treat the case of a particle de
caying from rest under the influence of the potential 
cp(r, f), with no x dependence. The classical case is 
solved in Sec. 3 of GIll. We will assume that cp is given 
such as to cause a particular m(t) dependence classically, 
i. e., cp( T, f) would give rise to a decay 

(5.9) 

and we examine what this will imply quantum mechani
cally. In this case, Eq. (5. 7) reduces to 

(1 + cp )(ill/l jar) = - ill/l lilt. (5. 10) 

We proceed by making use of the classical solution. 
First we note that the gauge condition, Eq. (5. 8), has the 
solution 

r = fcp + f(cp). (5. 11) 

The choice of the function j(cp) determines the particular 
time dependence of the decay, Eq. (5. 9). From Eq. (5. 11) 
we see that 

cp' == ilcp/ilT = (ilj /ilcp + t)-1 (5. 12) 

and then we can use this to eliminate the variable T in 
favor of cp, transforming from Ij/(r, t) to Ij/(cp, f). 
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In order to accomplish this, we note, using Eq. (5. 8), 

(al/l) = (aqJ\ (01/1\ = qJ' al/l, 
ar torI t aqJ/ t aqJ 

(01/1) = (a('o\ (al/l) + (al/l) = _ qJCP' ~ + ~. 
at T at IT aqJ T ot <P oqJ at 

(5. 13) 

Then the Schrodinger equation (5. 10) becomes 

(1 + qJ) qJ' al/l = _ (al/l_ qJqJ' al/l), 
aqJ at aqJ 

, al/l _ al/l qJ ----. 
aqJ at 

(5. 14) 

Finally we change variables again, this time eliminating 
qJ in favor of z, a variable which conveniently charac
terizes the classical solution, defined by 

(5.15) 

As was shown in GIll, the classical solution is described 
by 

z = const == zO' 

and along the line z = zO' 

(~\ _ dqJ 
at/. - dt ' 

qJ(t)=! ~dt. 
• ='0 at 

Equation (5.15) gives 

(az/aqJ)t = e-<p/qJ', 
and 

(
al/l\ = e-'" al/l, 
aqJ/ t qJ' oz 

(al/l) = e-<P al/l + al/l . 
at '" az at 

So finally, the Schrodinger equation (5. 14) becomes 

(5. 16) 

(5. 17) 

(5. 18) 

(5. 19) 

- e-<p(al/l/az) = - (al/l/at + e-<pal/l/az), al/l/at = o. 
(5. 20) 

The solution of this equation, of course, is 

I/I(z, t) = I/I(z), (5. 21) 

and the physical interpretation of the solution is quite 
simple. If the wavepacket I/I(z - zo) is narrow,and 
peaked around z = zo, it will remain that way throughout 
time, and the time dependent motion of the system will 
be given by 

which will be nonzero only in the neighborhood of the 
region where qJ varies as the correct classical function 
of t (the region where z ~ zo). 

The gauge condition plays a strong role in deriving the 
classical solution, and it in turn stems from the vector 
relativistic formulation of the theory. It is not at all 
clear what, if any, physical significance this implies in 
our nonrelativistic theory, although it greatly reduces 
the arbitrariness of the potential cp(r, t). 

6. GALILEAN INVARIANCE 
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entmass. Partly, this is because of the artificial separa
tion, nonrelativistically, of rest energy and binding energy 
as qualitatively different concepts, and the failure to 
recognize proper time at all. Relativistically, the res
triction does not occur, while nonrelativistically it mani
fests itself as a superselection rule demanded by the 
Galilean invariance of the theory. 2 

Basically, the argument against the superposition of 
different masses runs as follows. If one has a state 
which is a coherent superposition of two different mass 
particles, one may make a succession of transformations 
to coordinate systems moving at different velocities, 
ultimately returning to the original system. This pro
cess results in a new coherent superposition of states, 
different from the original one. One then argues that by 
having merely performed a series of coordinate changes 
on the system, without having affected the system physi
cally, one has yet managed to produce a different physi
cal state. Thus one concludes that such a superposition 
is ambiguous and excludes it a priori. 

We shall show that one can reinterpret the argument 
in a formalism where mass is a dynamical variable and 
that Galilean invariance poses no obstacle to combining 
states of different masses in such a formalism. First 
we review the argument in conventional quantum mecha
nics. We no.te that a succession of velocity changes is 
really a series of accelerations. So we ask the effect of 
subjecting a rigid Galilean reference frame to an arbi
trary acceleration, r --7 r 1, 

r1 = r - ~(t). (6. 1) 

To effect such a transformation, we convert from the 
coordinates (r, t) to (r1 , t), 

Then the Schrodinger equation 

- (1i/2m)\121/1 = - (Ii/i)(al/l/at), 
becomes 

- (1i2/2m)\1rl/l = - (Ii/i)(al/l/at) - ~ '\111/1). 

(6.2) 

(6.3) 

(6.4) 

If one introduces the new wavefunction u(r1 , t) by a 
phase change, 

(6. 5) 

then u obeys the equation 

1i2 2 •• Ii au 
- - \11 u + m~ °r1 u = - - - . 

2m i at 
(6.6) 

Thus one has made a unitary transformation to a new 
system where there is an effective gravitational potential, 

qJeff. = mg(t) or, g(t) = ~, (6.7) 

where, of course, g need not be constant in time. 

Now if one takes the system around a closed path ~(t), 
taking time T, such that 

~(O) = ~(T) = 0, 

~(o) = t(T) = 0, (6.8) 

In ordinary nonrelativistic quantum mechanics, where ~(o) = ~(T) = 0, 
the mass of a particle is a fixed parameter, one cannot 
have a free particle in a superposition of states of differ- then one has 
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1/I(T) = u exp[i(m/2n) foT ~2 dt] == uei",,,(T), (6.9) 

where u is the same solution of the free particle equation, 
both at t = 0 and t = T. 

Therefore, if we have a superposition of states, u1 of 
mass m 1 , and u2 of mass m 2 , such that 

1/1(0) = u1 + u 2 ' 

then at t = T, 

1/I(T) = u1(T)e im1 l/(T) + u 2(T)e im2 1/(T), 

(6. 10) 

(6.11) 

while if we had not made our excursion into an accelera
ted system, we would have had 

(6. 12) 

Thus, by merely transporting ourselves into and back out 
of an accelerated system, we have altered the relative 
phase of the states, which would clearly be an observable 
effect. We thus conclude that such a superposition of 
states does not occur in nature. 

Let us now carry through the same argument for a 
particle in a dynamic mass theory. The only difference 
between the two cases will be that now m is an operator, 
given by Eq. (5. 1), so that if the original wavefunction is 
1/I(r, T, t), then Eq. (6.9) becomes 

1/I(r,T,t) = exp(~ JT k2dt a/aT)U(rvT, T) o 
= u(r, T + ~ J T k2 dt, T) 

o 
(6. 13) 

where, at t = T, r 1 = r. This is to be compared with the 
state in the original unaccelerated system, 

1/1 0 = u(r,T, T). (6. 14) 

The difference between 1/1 and 1/1 0 is merely an expres
sion of the fact that proper time runs at a different rate 
in the accelerated and unaccelerated systems. In fact 
since, relativistically, 

dT = (1 - v2)1/2 dt Rl (1 - ~ v2) dt, (6. 15) 

it follows that in the laboratory system 

TO = T = T + ~ f v2 dt, (6. 16) 

where in our problem, v = k. 
And so, far from negating the possibility of a super

position of masses, the formalism produces just that 
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time difference effect which is physically required by 
relativity, to this order. Specifically, this is due to the 
fact that proper time enters our formalism explicitly, 
while the standard formalism does not recognize the 
concept of proper time as distinct from coordinate time 
in the nonrelativistic limit. 

It should also be pOinted out that the phase factor be
tween the two beams is very important in maintaining 
the uncertainty relation 6.m 6.T > Ii, in much the same 
way as the phase factor e i kx prevents violation of the 
p - x uncertainty relation in measurements made on 
spatially separated beams. 

Finally, let us use the Galilean invariance of the theory 
to convert the solution of the Schrodinger equation for a 
particle decaying at rest, Eq. (5. 10), into one represent
ing a free particle with velocity v decaying. The Schro
dinger equation for the moving particle will be Eq. (5. 7), 
where there is no external force (V = 0). 

According to Eq. (6. 5), the solution 1/1 to Eq. (5. 7) 
should be represented by 

1/I(r,T,t) = e(v.r-1/2 v 2 t)O/OT U(T,t) 

= U(T + V' r - ~ v 2t, t), (6. 17) 

where U(T, t) is a solution of Eq. (5. 10), representing a 
decaying particle at rest, and 

r 1 = r - vt. (6. 18) 

This should be a complete solution to the problem. To 
prove it, note that (with' == a/aT) 

1/1' = u', V1/I = vu', a1/l au v2u' -=----, 
at at 2 

so that Eq. (5. 7) becomes 

u" + v 2 U" + (cpu')' = _ (au' _ V
2 

u') 
2 at 2 ' 

(, au)' \u' + cpu' + at = 0, 

which is just Eq. (5. 10) for the function u. 

1D. M. Greenberger, J. Math. Phys. 11,2329,2341 (1970), and 
the paper preceding this one, J. Math. Phys. 15, 395 (1974). We 
refer to these papers as GI, GIl, and GIll, respectively. 

'The paper that explained the significance of Galilean invariance 

(6. 19) 

(6.20) 

in quantum mechanics was V. Bargmann, Ann. Math. 59, I (1954). 
See also F. A. Kaempffer, Concepts in Quantum Mechanics 
(Academic, New York, 1965), Appendix 7. 



                                                                                                                                    

A property of asymptotically flat, static, vacuum 
space-times * 

William Hallidy 
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(Received 24 August 1973) 

It is shown that a necessary condition for stationary, asymptotically flat, vacuum space-times to be 
static is that the Weyl tensor be electric type to asymptotic order ,-7, where, is an affine 
parameter along null geodesics. 

I. INTRODUCTION 

A space- time is said to be stationary if it possesses a 
time -like vector field which is a solution of Killing's 
equations. If this vector field is also hypersurface 
orthogonal then the space-time is said to be static. As 
is well known, these geometrical conditions on a space
time may be exploited to pick a preferred coordinate 
system based on space-like hypersurfaces in which the 
metric takes an especially simple form.1 

Newman and Penrose have developed a formalism for 
general relativity theory in which a preponderant role 
is played by the Weyl tensor rather than the metric 
tensor.2 It is assumed that the reader is familiar with 
this formalism. Their results are most naturally ex
pressed in a coordinate system based on null hyper
surfaces. An asymptotic form of their results was 
developed in later papers. 3,4 The conditions for a 
vacuum space-time to be stationary were then expres
sed as conditions on the coefficients of an asymptotic 
expansion of the Weyl tensor. Here it is shown that sub
sidiary conditions are imposed on the asymptotically 
expanded Weyl tensor by the requirement that the space
time be static. These conditions are shown to require 
that the Weyl tensor components be electric type to the 
asymptotic order investigated. This result is in agree
ment with the long standing assumption that for any 
asymptotically flat, static, vacuum space-time the Weyl 
tensor is electric type. 5 

In Sec. II the conditions for a space-time to be station
ary are reviewed. The investigation is restricted here 
to asymptotically flat, vacuum space-times for which 
the Killing vector is asymptotically time-like. In Sec. III 
the conditions for these space-times to be static are 
imposed in the Newman-Penrose formalism and the con
ditions on the Weyl tensor mentioned above are derived. 
In Sec. IV some concluding remarks are made. 

II. STATIONARY CONDITIONS IN NEWMAN-PENROSE 
FORMALISM 

In this formalism the Weyl tensor components are ex
pressed in terms of five complex functions, 1/1 A' (A = 
0, ... ,3), defined on the space-time manifold. In a null 
coordinate system the metric tensor components take 
the form 3 

gOIl = 0b' glk = X k - (~"W + ~kw), 
(1) 

gll = 2(u - ww), gke = _ (P~ e + ~k~ e), 

where k, l = (2,3) and (xo,x 1 ) = (u, r) in which u labels 
outgoing null hypersurfaces and r is an affine parameter 
along null geodesiCS on the hypersurfaces. The condi
tion that the space-time be stationary is equivalent to the 
condition that there exists a null coordinate system in 
which the Killing vector is given by 
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aXil aU 

Thus the metric and therefore the Weyl tensor are in
dependent of u. The coordinate system can be further 
specialized so that if it is assumed that6 1/10 = 1/18 r- 5 + 
1/16 r- 6 + O(r-7), then the Weyl and the metric tensor 
functions can be written 7 

1/1 1 = 1/I~r-4 + 51/18 r-5 + H1/Ifir-6 + O(r-7), (2a) 

1)/2 = 1)/~y-3 + 51)/~ r-4 + H21/18y-5 + ~ (ti 21/16 
- 41/1Ni~)r-6 + O(r-7), (2b) 

1/1 3 = ~ 5 21/1~ r-4 + ~ (8 31/18 - 31/1~~~)r-5 
+ ~ (ti 31/1fi - 16iJi~ti 1/1~ - 31/1g15 iJi8) r- 6 + O(r-7), (2c) 

1/1 4 = ~ & 41/1g r- 5 + 1~0 (8 41/16 -40~~521)/~)r-6 + O(y-7), 
(2d) 

u = - 1- 1/1~ r-1 - ~ (& 1/1~ + 15 iJ;~) r-2 - ~ (ti21/18 + 152~ 8)r-3 

- ,!O (8 21/16 + 15 2iii6 + 101/l~iJi~) r- 4 + O(r-5), (2e) 

Xk = t (~OkiJi~ + ~Ok1/l~)y-3 + t2 (~okl5tV8 + ~Okti'1/Ig)r-4 
+ 10 (~okl5iJifi + ~Ok81/16)r-5 + O(r-6), (2g) 

with ~02 = - i~03 = P and P = ~ (1 + ~~), where 
~ = -x2 + ix3 and 

lim r2f{kl = - 2p2 0kl . 
r-+oo 

(2h) 

The metric components may then be written, gOIl = oi, 
glll = o~, 

gll = - 2 - 21/1g r-1 - Wi 1/1~ +15~q)r-2 - ,~(i521J!8 + 152iJi8) r-3 

-to(i5 21J!6 + t'j21/1fi + 401J!~\fi~)r-4 + O(r-5), (3a) 

f{lk= j(~OkiJi~ + ~Ok1J!~)r-3 + t(~okI51/18 + ~Oki51/1g)r-4 
+,~ (~okl5tVfi + ~Ok5l/1a)r-5 + O(r-6), (3b) 

gkl = - 2p2 0kl r -2 - ~ (1/I8~Ok~OI + 1/18~Ok~OI)r-5 

-11(1J!fi~Ok~OI + tVfi~ok~O!)r-6 + O(r-7), (3c) 

goo = 2 + 21J!g r-1 + t(ti 1J!~ + t'j iJi ) r-2 + 12 (821J!8 + iS2~8)r-3 

+&0 [3(& 21J!fi + 152~a)- 40l/lq~q]r-4 + O(r-5), (4a) 
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gOk = !p-2(~Ok~ + ~Ok1/l~)r-l + -k P-2(~Okts~8 + i Oll'ti1/l8>y-2 

+ fa P-2(~OkI51/1"5 + ~Okti1/l"5)r-3 + O(r-4), (4b) 

gKI = - tp-2/ikly2 + f.t P-4(1/I8~Ok~OI + lji8~Ok~OI)y-l 
+ 18 P-4(1/I6~Ok~OI + ljiMOk~OI)r-2 + O(r-3). (4c) 

The conditions on the Weyl tensor components imposed 
by the field equations and the condition that the space
time be stationary are given by4,s 

wg = ljig = const, 

where am,bm,and em are constants. 

The terms in square brackets in the equation for 1/15 are 
the Newman-Penrose constants in asymptotically flat, 
stationary, vacuum space-times.4 

III. STATIC CONDITIONS IN NEWMAN-PENROSE 
FORMALISM 

The condition that a space-time be static is equivalent 
to the condition that the Killing vector, TJfi , satisy the 
following equationsl; 

TJ[rTJu,aj = 0. (6) 

As TJIl == Il~ in this coordinate system, it follows that 
TJIl = gil 0 so that Eq. 6 becomes 

gOO,lg02 - g02.1goo - gOO.2 = 0, 

gOO.lg03 - g03.l g00 - gOO.3 = 0, 

(7a) 

(7b) 

gOO.2g03 - gOO.3 g 02 + (g02,3 - g03,2)gOO = 0, (7c) 

g03,lg02 - g02,lg03 + g02,3 - g03.2 = 0. (7d) 

Using Eqs.4 to expand Eqs. 7 asymptotically, the coef
ficient of each separate order of y-l is then equated to 
zero. The Eq.7d is the easiest to write out. The coef
ficients of the r- 1, r-2 , and r-3 terms for this equation 
yield, respectively, 

51/1~ :::: I5lji~, 

i5 21/18 :::: 15 2~8, 

15 2'Jl6 = t5 21/i6' 
(8) 

These are just the conditions that 1/1~, 1/18, and 1/1"5 be 
electric type. s The remaining Eq. (7a, b, c) yield no 
further conditions. Conditions equivalent to Eqs. 8 appear 
in the remaining equations but at higher orders in y-l. 

Applying the above conditions to the coefficients of 
each power of the asymptotic expansion of the Weyl 
tensor component functions given by Eqs. (2a-d) it is 
easily found that the Weyl tensor is electric type to 
order r-7 in the asymptotic expansion. 
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As is well known, static space-times are invariant 
under a discrete transformation which has the form of 
a time reversal in an appropriate coordinate system. l 
This implies here that the Weyl tensor is asymptotically 
electric type to order s-7, where s is an affine para
meter on incoming null hypersurfaces, and further that 
the Newman-Penrose constants defined on [J- are the 
same as those defined on II+, as is easily seen by apply
ing the properties ofs 15 and Eqs. 8 to the constants 
defined on [J-, The c~nstants defined on d- are given by 
the expression ~ (15 21/1~)2 - Is 1/Ig(15 4~g) as inspection of 
Eqs. (2c, d) shows. 

IV. CONCLUSIONS 

Although it is not possible to conclude from this in
vestigation that the Wey! tensor must be electric type 
for a space-time to be static, it gives an indication that 
such an exact result may be true. It is encouraging 
in this respect to see that the asymptotic result of this 
paper holds even at an order in r- 1 for which the non
linear nature of the field equations is making its effects 
known through the ~resence of the Newman-Penrose 
constants, (1/1~)2 - '2 1/1g1/1g. The basic difficulty in ob
taining an exact result is that is has not been possible 
to write the coefficient of the general term of an asympto
tic expansion of the Newman- Penrose equations even for 
stationary, asymptotically flat, vacuum space-times. 

One curious feature of this investigation is the inter
dependence of Eqs. 7. Apparently, their independence 
becomes manifest only at higher orders in r-1 than were 
investigated here. 9 
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The irreducible integrals defined in the Mayer theory of real gases are derived for one-dimensional 
systems having hard rod, weak long range, Curie-Weiss and van der Waals potential functions. In 
two cases, independent knowledge of the exact equation of state of the gas permits the derivation of 
general star graph degeneracy relationships. These, in turn, are useful for the study of new potential 
functions; a penetrable repulsive force is shown to produce attractive force behavior in the gas state 
equation. 

I. INTRODUCTION 
The exact statistical mechanical properties of systems 

of many interacting particles are rigorously known for 
only a few interparticle potentials. 1,2,3,4,5,6 Although 
the mathematical tools are in principle available, even 
very simple pair-potentials have defied precise solu
tion. In particular, the Mayer cluster theory7,8,9,10 
has often been introduced as a rigorous theoretical link 
between gaseous state equations and microscopic forces, 
but it is difficult to use as a calculational tool. This is 
the case because the cluster bonding structure and the 
inseparability of particle coordinates present complex 
mathematical problems. 

For some potential functions of interest, however, it is 
possible to reduce the mathematical difficulties of the 
Mayer form to a manageable level. One-dimensional 
systems can significantly reduce the bonding possibilities. 
Also the cases of repulsive interactions and of weak, 
long range forces simplify the Mayer cluster integrands 
to the degree that coordinate separability is possible 
over some part of the full integration range. With these 
two aids, the Mayer formalism can be put to direct cal
culational use. 

In the sections to follOW, a variety of one-dimensional 
gaseous phase interaction potentials will be studied 
through their behaviour in irreducible cluster integrals. 
The linkage between irreducible integrals and graph 
theoryll, 12, 13, 14, 15 will be used to provide theorems 
on star graph degeneracies. Lastly, such theorems will 
be shown to allow the investigation of new potential 
functions. 

II. THE INFINITELY HARD ROD GAS 

A. Cluster integrals from the equation of state 

The lattice gas of an infinitely repulsive interaction 
has been treated by many analytic techniques16 and 
therefore provides an apt introduction for the present 
methods. This gas obeys the interparticle potential 

if rods i and j of length m 6 over lap J +00, 

U ij = t 0, 
on at least one site, 

if rods i and j of length mohave 
no common site. (1) 

The state equation is obtained once the weighting function 
for equivalent placements is found. Given a line of 
length L, having N = L/o sites separated by the length 
0, the number of ways of arranging n infinitely hard 
rods of length m on these sites is17 

(2) 
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and the pressure of this gas follows from the use of (2) 
in the canonical partition function 

~=.!.ln 
KT 0 

1- mop 

1 - (m + l)op 
(3) 

where P, p, T are the pressure, density, and temperature 
of the gas, respectively, and J( is Boltzmann's constant. 

Gaseous equations of state can be expanded in powers 
of the density ("virial expansion") since the pressure 
is small and single-valued at low densities. In par
ticular, succeeding terms of a virial expansion are 
higher order corrections arising from larger clusters 
of gas molecules. The Mayer theory casts the state 
equation into the form 

P k 
-- = 1 - 6 kIT f3 kp k, 
pKT k~1 

where the coefficient of the kth power of the density 
includes the irreducible integral factor 

IJ J~' -- -{3k = - ... [(L.J rrlJij )dXldX2 ••• dXk +1 
k!V 

(4) 

(5) 

Here, ('[II)' is the sum over all products offij having 
at least double connectedness and no articulation points. 
Integration is performed over all possible locations of 
these particles (position vector Xi) in space. The Mayer 
function is defined 

where U ij (r) is the two-body configurational energy of 
the ith and j th particles. For infinitely hard rods, all 
(3k can be obtained by expanding (3) into the form (4): 

(6) 

Ok !31m) = - k [{m + l)k+l - mk+l]. (7) 

We observe that the continuum limit of the lattice gas 
(m ~ 00 with a = m 0 a constant) for hard rods is 

k + 1 
f31'><J) =- -k-ak. (8) 

B. Cluster integrals from Mayer definition 

For a one-dimensional lattice gas the integrations 
over 3(k + 1) coordinates in (5) become sums over 
(k + 1) coordinates. If the star graph representation of 
the integrand is then introduced, (5) becomes 

(9) 
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Here 1 is the number of lines in a star graph of k + 1 
points and is confined to the values k + 1.;; 1.;; k(k + 1)/2. 
The subscript e counts the number of topologically dif
ferent stars having k + 1 points and 1 lines; Sk I e is the 
star "degeneracy." Three problems are presented by (9): 
the enumeration of star graphs and the determination of 
their degeneracy values-two mathematical matters-
and the summations over! functions-a process that 
requires the specification of a physical interparticle 
potential. For perspective, it should be noted that the 
S k, /, e are presently available18 only for clusters 
k .;; 7. Evaluations of infinite sets of {3 k cannot be done 
therefore by the obvious path. 

When the potential function (1) is inserted into (9), the 
summations over X i are truncated because a nonzero 
contribution arises only when all the pairs of rods 
bonded in a graph are within m + 1 sites of one another. 
When one of the k + 1 rods is taken as a fixed reference, 
the maximal "width" of the cluster with respect to that 
origin site is prescribed. However, it is not true that 
(9) requires all the k + 1 rods to be within m + 1 sites 
of each other! An overlapping of rods can give non-
zero contributions to 13 k and, for such a configuration of 
k + 1 rods on the line, only some of the star graphs in 
the complete set will contribute. This is a major dif
ficulty: particular particle configurations choose distinct 
graph subsets. Such subsets have not been studied 
systematically. 

The configuration shown in Fig.la illustrates the 
graph-specific subset selection with four, labeled, two
unit-long rods (k = 3, m = 2). For k = 3, there are just 
three star graphs (Fig.lb). The la configuration will 
contribute 3 (e- OO / KT - 1)4 from graph #1, but graphs #2 
and #3 do not contribute for that configuration of rods 
since! ac = 0 is a factor in their products. 

Progress can be made if the collection of rod con
figurations in (9) is separated into two classes: (1) all 
rods within an interval of m + 1 Sites, and (ii) at least 
one rod outside this interval of m + 1 sites. (For con
creteness, each rod of length m[) can be thought to be 
located by its left endpoint.) This separation does not 
abandon any star graph contribution. The configurations 
now in group (1) share the property that the entire set 
of star graphs of k + 1 points contributes for every con
figuration in the group. Further, each graph of 1 bonds 
has an! function product of value (-1)/ (independent of e) 
for each rod configuration. 

d. 
b a c -0 Z 3 4 S 

FIG.la. A typical overlap configuration of four rods 
(k = 3, III = 2). The configuration width is 65. 

Assigned graph 
number: 

-.. 
" 
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FIG. lb. The four-point star graphs. 
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Hence, 

(10) 

where (3k](i) is the contribution to (3k of the rod configura
tions in group (1). USing the definition, 

'E Sk / e = Sk I (11) e .. , 

and the zeroth alternating moment sum of Sk I [derived at 
(32)], Eq. (10) can be written ' 

[)k m m 

(3k](i) = - T Ro"'x ~o {1}. (12) 
1 k+l 

It is now necessary only to count the number of con
figurations making up group (i), 1)(;), in order to obtain 
an exact evaluation of (3kJ(i)' 

The number 1)(i) must include all configurations in 
which k + 1 labeled rods are within an m + 1 site in
terval but must exclude all configurations which are 
displacements of the k + 1 rods by some length .;; m [) 
("redundant configurations"). This is accomplished by 
counting the number of ways of placing k + 1 labeled 
particles on r different sites with no site empty and 
letting r take the values 1 .;; r .;; m + 1. Then 

17(i) = 'I;l (r ~1) ~"'Ok+l 
.. = 1 

=~(m :1)~TOk+l_~(~)~"Ok+l 
= (m + l)k+l _m k+1 , (13) 

where ~ is the finite difference operator.12 

Another evaluation of 1)(i) is the following. If the 
nondisplacement requirement is temporarily neglected, 
there are (m + l)k+l ways of placing k + 1 rods on 
m + 1 sites. Similarly, the k + 1 rods could be put on 
m sites in m k +1 ways. This latter number represents 
the number of configurations of k + 1 rods for which no 
rod is required to be on one "chosen" site of the m + 1 
sites. Thus the number of nondisplaced configurations 
of k + 1 rods (those with at least one particle on a 
"chosen" site) is (m + 1)k+l - mk+l, as in (13). 

Combining (9), (12), and (13), we have 

[)k 
f3/r = f3k](i) + (3k](ii) = - T [em + l)k+l - mk+l] . .• 

+~~, ~' 
k! Xl (at least one X :;. m + 1) X k +1 

x ~~ ltSk,/,&(IIf)k,/,ef . (14) 

The comparison of (14) with (7) produces a theorem on 
hard repulsion star graph subsets: 

I:'( .. . 'E' h~ 'ESk / e(nj)k let == O. 
Xl atleast one x ;;. m + 1)Xk /1 fJ" " \ 

+1 (15) 
This equation demonstrates that a special, complex sub
set of star graphs gives a net zero contribution to the 
irreducible cluster integrals of a hard rod gas. It il
lustrates that graph theorems of physical interest can 
derive from the solution of physical problems. Specifi
cally, when a state equation and the potential function 
supporting it are known, a graph theorem is available 
through the Mayer relationship. 
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A further value of Eq. (15) is the guidance it can give 
to numerical solutions of vi rial expansion problems. It 
is the proof of suggestive observations by Hoover and 
deRocco 1S and by Ree and Hoover. 19,20 The first 
authors numerically evaluated hard rod integrals f32 
through f37 using a "subintegral" method. They found 
that net contributions to their f3 k were generated only 
by "a- subintegrals"; that is, only by integrals for which 
all particles were confined within the hard rod length 
0'.21 Their O'-subintegrals are equivalent then to the 
present type (i) configurations which were the only net 
contributors to f3 k' Ree and Hoover introduce "modified 
star graphs" to calculate virial coefficients more ef
ficiently. They note that just the contribution of the fully 
bonded star for hard rods entirely accounts for the virial 
coefficient value and they imply that the sum of contri
butions of all their other "modified star integrals" is 
zero. From Eq. (15), therefore, it is seen that the Ree and 
Hoover modification is tantamount to a transformation 
of the range of integration of the Mayer integrals for the 
potential under discussion. 

III. WEAK, LONG RANGE INTERACTIONS 

The large class of long range potentials allow Mayer 
formalism usage because the inverse range length is 
a small parameter whose order can be estimated in the 
contributions to f3 k' Consider the interaction pair
potential with a range of m sites and a strength Eo/m: 

u .. = {±Eo/m, 
IJ 0 , 

IX i -Xjl .; mo, 

IX i -Xjl > mo, 
(16) 

where Eo is positive and finite and Xi' X j are the co
ordinates of the ith and j th particles. The upper sign in 
(16) corresponds to a repulsive force and the lower one 
to an attractive force. (This convention will be contin
ued below.) When the parameter m becomes very large, 
the force range becomes very long and simultaneously 
the force becomes very weak, but the total energy per 
particle pair remains constant. For large m, the Mayer 
functions in the region IX i -Xjl .; mo can be expanded: 

!i·=±--+e -Eo ( 1 ) 
J mKT m2 

(17) 

where e(x) is the order of magnitude of x. 

Let the summation ranges of (9) be separated into two 
groups as in Sec II. When all particles are confined 
within an interval of one force range, the number of 
configurations is given by (13) and (9) becomes 

f3 (m) -
k -

-L(k/a~T1) ~ {s (e± mE~T _ 1) I} ... 
k!' lok+1 e k.I,e 

[(m + l)k+1 - m k+1] ... 

+~~' '" ~' 
k! x, (at least one Xi > m + l)x k +1 

{-y ~ Sk,I,e(ll!)k,I,6} . (18) 

The net contribution from configurations wider than the 
force range will not be zero for long range potentials 
and the exact form of 131m) for finite m is not extractable. 
However, the m-dependence of the factors in (18) and the 
behavior of the expression as m -> OC.J can be deduced. 

Let the labeling of the star graphs be temporarily 
disregarded. This will overestimate the true number 
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of configurations of k + 1 distinguishable particles con
tributing to (18) but will be a sufficient evaluation. By 
the double connectedness requirement on star bonding, 
the maximum width of any cluster is the number of sites 
in the force range, m, multiplied by the maximum number 
of force range intervals pOSSible, which is 

. k-l k+3 
I = largest mteger ., -2- + 2 == -2- (19) 

The quantity I is derived from the configuration in which 
there are single particles on the end sites of the cluster 
and two particles on the occupied interior sites. Neglect
ing star labels and eliminating redundant configurations 
by fixing one particle to an "origin site", the number of 
contributing configurations is 

(2mJ)k == e(m k). (20) 

But, in either term on the right of (18), the maximum con
tribution from anyone configuration is of order l/mk+1, 
since every configuration must have at least k + 1 bonds 
and each bond contributes e(l/m), according to (17), 
when m is large. Therefore, 

k;:. 2. (21) 

The case k == 1 is excluded from (21) because it alone 
is exempt f:rom the double-connectedness property of 
the star graphs. The integral f3 1(m) derives from two 
partides and their one bond. Since no configurations 
wider than the force range are pOSSible, f3 1(m) is exactly 
given by 

E 
f3 1(m) ==!12[(m + 1)2 - m 2] ~ 'f __ 0_ (2m + 1) 

m»l mKT 

== 'f 2:; . (22) 

Clearly when the force range approaches infinity, 

f3 1(oo) == 'f 2Eo/KT, 

k '" 2. 
(23) 

Entering (23) into (4) gives the equation of state of these 
potentials: 

iT == p ± (Eo/KT)p2 (24) 

IV. THE CURIE-WEISS GAS 

The repulsive and weak attractive functions just con
sidered allow useful approximations to real systems in 
combination. The Curie-Weiss model is such a com
bination. 22 Knowledge of the state equation and potential 
function of the model suggest there is an opportunity to 
obtain star graph relationships. The pair potential is 

{ 
+ OC.J for 2 particles on the same Site, (25) 

U =: - 2Eo/m for 2 particles on different Sites, 
. Eo> 0, 

where m is the number of lattice sites over which the 
attractive force acts, and the state equation 

P 1 1 2Eoo 
KT == {; In 1 _ op - KT p2 (26) 

yields irreducible integrals: 

i3 1 == - 1 + (2Eo/KT), 
(27) 

f3 k ==-I/k, k>1. 

These f3 k will be valid in the one phase regions. 
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To derive 13 k from the definition (9) with the potential 
(25), two configuration classes are defined: (0 the single 
configuration in which all particles are on one site, and 
(ii) all other configurations. For the class (i) configura
tion, we have 

(IIj) k+l,I,,, = (-1)/ for all k + 1, , 

since U = + <Xl for every pair of bonded particles. 
contribution to 13 k is 

1 (k/2)(k+l) 
f3 k ](i) = k-' E (-1)ISbl.1 

. lok+l 

using (11). For the class (ii) configurations, 

1, , ~ f f3 k](ii) = ki E ... ~ E ~ Sk+l I e(TIj)k+l Ie' 
• Xl X k +

l 
Ie" , , 

(28) 

The 

(29) 

(30) 

where 0' requires that all particles cannot occupy the 
same site and where the j function follows from (6) and 
(25). The connectedness of the star graphs requires that 
every term in the integrand of (30) have at least two 
factors with U = - 2Eolm, that is, every term is at least 
of order 11m when m is large. In one phase regions, 
every term in (30) goes to zero when m -7 <Xl. Thus 

131 = - 1 + (2EoIKT) 

13 k = k
l
, 6 (-1)/Sk +1 l' k> 1. 
• I ' 

(31) 

Equating (27) to (31), the following star graph theorem 
is demonstrated: 

(kl2)(k+l) 
E (-l)lSk+l.I=-(k-l)I. 

1= k ... l 
(32) 

This "zeroth alternating moment" of the star degeneracy 
is used in further theoretical work in Sec. II and VI. 
Three such moments are known from the work of Riddell 
and Uhlenbeck14 but on the basis of a mathematical, not 
a physical, analysis. 

V. THE VAN DER WAALS GAS 

A second combination of repulsive and long range at
tractive forces is realized in the van der Waals mode1.23 
On a one-dimensional lattice whose sites are spaced f> 
units apart, allow two characteristic lengths to exist: 
a = m f> for a repulsive region and na = nm f> for an at
tractive region of interaction. The potential for a particle 
pair is 

1 
+00, 0,,; IXi -Xjl ,,; mf>, 

U ii = -EolnKT, mf> < Ix; -xii,,; nmf>, 

0, IX i -Xii> nmf>. 

(33) 

When (33) is inserted in (9), the summations over place
ments of the k + 1 particles can be separated into three 
classes: 

13 k = (:lk] pure repulsion + 13 k ] pure attraction 
forces forces 

+ 13 k ] mixed forces. (34) 

The first term includes configurations in which every 
particle is within m sites of the particles to which it is 
bonded, for all possible star bondings. Their contribution 
was calculated in Sec. II: 

13 k] pure repulsion = - (f>klk) [(m + l)k+1 - mk+I]. (35) 
forces 
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The second term of (34) includes configurations in which 
no particle is closer to another particle than m + 1 sites 
but no further than nm sites. The derivation of Sec. III 
then applies, giving 

2Eomf> (1) f3t1 pure attraction = + ---yfj' + e n 
,8k] pure attraction = e(lln), k :;. 2. 

(36) 

For the mixed force 13 k contribution, the n-dependence 
of the j product and of the number of configurations are 
computable. Every configuration contributing to Ilk] ••• 
mixed force can be considered a composite of "islands" 
of particles. The particles of each island are within m 
sites of one another while the islands are separated by 
distances greater than m 5. By the multiconnectedness 
requirement on the star graphs, every island must have 
at least two (long range) bondings to particles in other 
islands. 

For an arbitrary configuration of k + 1 particles let 
there be ~ islands where, recalling (19), 

(37) 

This means there must be a minimum of ~ long range 
bonds, which contribute a factor of e(n-t ) to 13 k ] mixed 
force for large n, by the expansion of the Mayer function 
with U = - EoIKT. The number of nonredundant con
figurations having just ~ islands is of order nt-I, since 
every island excepting the "origin" island can move over 
2mn sites (when the overestimate of unlabeled graphs is 
made). The contribution, then, to 13 k] mixed force from 
all configurations having just ~ islands is of order lin. 
Since the number of ~ values is finite and independent 
of n, it is seen that 

13 k ] mixed forces = e(lln) (38) 

Collecting, (34), (35), (36), and (37) the irreducible integ
rals for finite range forces are 

2Eof>m (1) 
,81 = - f>(2m + 1) + ~ + en' 

f>k (1) 13k = - k [(m + l)k+l - m k +l ] + en. ' 

(39) 

k:;. 2. 

When the attraction ranges become infinite, n -7 <Xl, and 
the second equation of (39) reduces to one term. The 
common van der Walls equation of state follows when 
the continuum limit of (39) is taken: 

p p EQa 2 

KT = 1 - ap - KT P (40) 

Comparison of the Curie-Weiss and the van der Waals 
models shows that the van der Waals repulsive force 
contribution derives from configurations spreading over 
many lattice sites while the Curie-Weiss law derives 
from a point (one site) repulsion force. Lengthier argu
ments by deRocc024 and Widom25 lead to an equivalent 
conclusion. In their terms, the excluded volume is in
dependent of the density for the Curie-Weiss gas but not 
for the van der Waals gas. 

The van der Waals "unphysical region" appears in 
Eq. (40) because the force range has been allowed to 
become very large before the 13 k were inserted into 
Eq. (4). A derivation that could predict two phase states 
would reverse the order of these two steps. Then, 
however, there would be an infinite number of terms of 
order lin, and the order of magnitude estimate of 13 k 
used above would be insufficient. Kac et al. 5 succeeded 
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in carrying out the limits in the proper order for a par
ticular one-dimensional potential having an exponential 
long range attraction. The proper two phase states were 
then seen. 

VI. A PENETRABLE REPULSION POTENTIAL 
The solutions of the preceding sections have in common 

the property that net contributions to 13 k from particle 
configurations wider than the force range are either 
zero or of negligible order. Enumeration of the number 
of contributing wide configurations has been seen to be 
more intricately connected with the properties of the 
star graphs than the enumeration of configurations nar
rower than or equal to the force range. For this reason, 
it is profitable to consider new models that will allow 
similar Simplification. 

An interesting example of this is the system where 
the binary interaction of two molecules is allowed to be 
modified by the presence of a third molecule. Consider 
a cluster with l repulsive bonds. Assume that in small 
clusters where particles interfere with one another, 
the Mayer function is not -Ion the average, but (ao - 1), 
where ao is very small and represents a slight decrease 
in the repulsion effect. It is again possible to divide the 
set of particle configurations into two parts: (i) all 
particles are within m sites of the "origin" and (ii) at 
least one particle is further than m sites from the 
"origin." Introducing the function! == (ao - 1) into (9) 
and using (11) and (13), 

Since ao « 1, 

(ao -1)1 == (-1)1 + (-1)1-1 (i)ao + (-1)1-2 (~)a5 + ... 
(42) 

and (41) becomes 

f3k](i)== ~~ [(m + l)k+1 -mk+l]{~ (-I)I(~)Sk.l'" 

- ao ~ (-1)1 (i)Sk,1 + a5~(-1)1(~)Sk'I" .}. (43) 

The first term is evaluated using (32); the two succeeding 
alternating degeneracy moments are known in closed 
form.14 H attention is limited to first order in the small 
quantity ao' (43) can be written 

The contribution to 13 k from the wide configurations 
i'lk](ii) is zero, by Eq. (15). Clearly (44) fails as soon as 
k2ao is of order one. Implicitly, it has been assumed that 
the virial ~xpansion of the equation of state converges 
fast enough so that a i'lk for large k not represented by 
(44) is of no importance. Inserting (44) into (4) the lattice 
gas equation of state is found: 

P 1 ( 1 - mpo ) 
KT == 6 In 1 _ (m + l)po ... 

p
2

oao ( m 2 
+---

2 (1 - mpo)2 

(m + 1)2 ) 

[1 - (m + l)pO]2 
(45) 

In the continuum limit, 

P p aaop2 

KT == 1 - ap - (1 _ ap)2 
(46) 
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The first term recovers the hard rod solution; the second 
term corrects for the inelasticity of the rods. At low 
densities the second term is formally similar to the 
attractive part of the van der Waals equation. That is, 
the "soft" repulsion force driving (46) can be considered 
a combination of an infinitely hard short range repulsion 
and a weak, long range attraction force. Hauge and 
Hemmer 26 have shown in general that the lowest order 
state equation for such combinations will take the form 

P == p s - ap2 (47) 

where Ps is the gas pressure from the short range force 
and a is dependent only on the long range interaction. 

VII. CONCLUSIONS 

It has been shown that many one-dimensional gas 
phase solutions can be drawn rigorously from Mayer's 
irreducible integrals. This is the case even though 
extremely few exact properties of the integrals are known. 
In particular, all the physical models presented above 
derive from a single alternating star degeneracy moment 
and a theorem following from the hard rod solution. 
Evaluations of Mayer integrals in problems of physical 
interest can be used to derive graph theoretical rela
tions. Such mathematical relations, particularly with 
respect to graph subsets, can be used in turn to solve 
new physicru. problems. The characteristics of a graph 
theorem -yielding physical model are that the equation 
of state be independently known and that the interparticle 
potential function be well defined. 
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A spinor field which is covariant under the group of conformal motions in general relativity is 
defined. These spinor fields extend the concept of isospinors to the cases where conformal motions 
take place and coincide with Penrose's twistors in the case of flat space-time. It is found that only 
certain special conformal spinor fields lead to physical entities. The example of Kruskal's conformal 
spinors is studied. 

1. INTRODUCTION 

In a previous paper we have introduced the notion of 
isospinors in general relativityl. The isospinors were 
presented as objects which would be convenient to des
cribe isometric covariance in general relativity. Since 
isometries are not always present in general relativity 
the isospinors are not always physically meaningful. 
To cover this deficiency we turn to the next more gen
eral group of symmetries which is the group of confor
mal motions. Following the same basic ideas we con
struct a spinor structure which is covariant under the 
group of conformal motions and consequently are the 
appropriate vehicle to describe conformal covariance 
in general relativity. These conformal spinors re
semble Penrose's Twistors except by the significant 
fact that in the case of general relativity they are locally 
defined. 2 ,3 However, in special relativity we can est
ablish a one-to-one relation between conformal spinors 
and twistors. 

We use the same notation as in the isospinors paper. 
Thus a general relativistic space-time is denoted by 
R4. The isometric, minimal embedding space of dimen
sion p and with a metric tensor 1] v with r positive and 
s negative units in the diagonalis denoted by M (p, r, s) . 
Cartesian coordinates in this space are denoted by XI', 
with all Greek indices running from 1 to p, unless ex
plicitly stated to the contrary. Gaussian coordinates 
in M(P, r, s) based on the hypersurface R4 are denoted 
by x« and in particular xi denotes the Gaussian co
ordinates measured in R4, while x A denotes the Gaussian 
coordinates measured orthogonally to R4 (lower case 
boldface Latin indices run from 1 to 4 while capital 
boldface Latin indices run from 5 to p). The embedding 
is specified when the functions XI' (xa) are given. With 
the corresponding derivative map, X~ ==: axl' laxa , we 
can relate vectors and tensors from the Gaussian to the 
Cartesian system. The inverse is obtained from X« (XI') 
and xJ!.a = axa/axJ!.. In the Gaussian system the space
time R4 is defined by the equations xA == O. Any real 
function ¢ (x«) defined in M(P, r, s) is projected in R4 by 
taking the limit x A -> O. We use the simplifying notation 

<I> I R4 = lim cp(x a ). 
xA~o 

If the function cp is defined in R4 this fact is stated by 
cp (R4). It is not always true that cp I R4 == <I> (R4). 

Finally, O(r, s) stands for the homogeneous group of 
isometries in M(P, r, s) while P(r, s) is the inhomogene
ous or the "Poincare" group in the same space. The 
conformal group will be denoted by C(r, s). 

2. THE CONFORMAL GROUP 
The group of conformal motions on a flat space 

M(P, r, s) is generated by the infinitesimal transforma
tions 

X'I' = xl' + UI', (2.1) 
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where 

£ 1]J!.v::::: U (I'. v) == !.- UP 1]J!.v 
u P .P 

(2.2) 

(coma denotes ordinary derivatives). In Gaussian co
ordinates based on a space-time R4, isometrically and 
minimally embedded in M(P, r, s), the above expressions 
read 

x'a = xa + ~a, 
(2.3) 

I:(a;/I) = 1 ty gaB ., p ., ; y , 

where the semicolon denotes covariant derivative with 
respect to the metric affine connection of M(p, r, s), and 
gaB are the Gaussian components of the metric tensor 
of M(p,r,s). The components of the vector ~a are related 
to the components Ull by ~a == xaJ!.UJ!.. To find the 
transformations induced in the space-time R4, we split 
(2.3) as 

and 

X'i=Xi+~i, X'A=XA+~A 

I: u;j} == !.- ta gij ., p";a' 

l:u;A) ==: !.- I:a giA ., P ";a , 

I:(.A;B) == !.- ta gAB ., P ";a • 

(2.4) 

(2.5) 

The first two equations can be joined together and after 
a contraction with gia it gives ~i;i = (4IpH}'; . Simi
larly, joining the last two equations and contr~cting with 
gAa' gives ~A'A = (llpH}'. ,where l ==: p - 4. Therefore, 
(2. 5) can be rewritten as'}' 

~(i;A) = ~ ~k;kgiA = (lit) ~AiAgiA, 

~(.A;B) == (lit) ~C;cgAB. 

The space-time projection of (2.4) is 

(2.5') 

Therefore, if we wish to leave unchanged the equations 
of definition of the hyper surface R4, we have to impose 
the condition 

(2.6) 

This condition is also necessary in order that the first 
equation (2.5') gives the conformal Killing equation in 
R4: 

On the other hand, since giAIR4 = 0 (see, e.g., Szekeres4 ), 
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the second equation (2.5') gives ~(i:A) IR4 = O. This 
means that the conformal motions in the plane (i-A) 
give an isometry when projected in R4. Finally, the last 
equation (2.5') describes a conformal motion orthogonal 
to R4. Therefore, the group C(r, s) induce one isometry 
plus a conformal motion in each space-time R4 iso
metrically embedded in R4, provided the condition (2.6) 
is applied. We denote the resulting group by C(r, s) IR4 • 

Conversely, if a conformal motion in the space-time R4 
embedded in M(P, r, s) is given then ~A = O. This con
dition clearly defines a subgroup of C(r, s) IR4 where 
the transformations orthogonal to R4 do not appear. 

The embedding of R4 in M(P, r, s) is invariant under 
the group O(r, s), but it is not invariant under C(r, s). 
Thus if the functions XI' (xa) gives the embedding of R4 
then the new set of functions X'jJ (x a ) given by (2.1) does 
not necessarily give the same embedding. In order to 
avoid this "conformal variance" of the embedding, we 
replace the space M(P, r, s) by a new space M'(P', r', s') 
with p' > p, such that C(r, s) will be equivalent to OCr', s'). 
This is done with the help of Liouville's theoremS: 
Given a flat space M(P, r, s) (p > 2) a conformal motion 
in such space can be decomposed as 

(a) a transformation of P(r, s) X'jJ = AUvXv + AI', 
(b) a dilatation X'jJ = CXjJ (C = const), 
(c) aninversionX'jJ =XjJ/txpxp; 

these transformations generate a projective group in 
a (p + 1) - dimensional projective coordinate space 
spanned by the coordinates YIl, yO defined by YjJ IYo = 
XIl, yp-I-1/Yo = tXIlXfl.' where yO is the homogeneity co
ordinate and it is equal to 1 for finite pOints and equal 
to zero for points at infinity. In this projective space 
all points of M(P, r, s) are mapped into a quadric surface 
Q defined by 

1)1l"YIlYv - 2yOyP+l = O. 

The projective transformations induced by (a), (b), and 
(c) on the projective space are 

(a) 

(b) 

(c) 

yo' = yo, 

Y'p-I-l = yp-I-l + 1) All YPAv + .!yo1) AjJA" 
Il" P 2 Ilv ' 

y'O = (l/C)YO, y'p-I-l = CYP-I-l, 

Y'O = YP+l, y'p+l = yo. 

These transformations leave the quadric equation in
variant. A metric, (p + 2)-dimensional coordinate 
space can be constructed by definition of the new co
ordinates 

Zp+l = (1/v'2) (yo + YP+l), 

Zp,2 = (1/v'2) (yO _ YP+l). 

In this space the quadric equation corresponds to 

(2.7) 

1)llv ZIlZV - (ZP-I-l)2 + (ZP+2)2 = 0, (2.8) 

which means that the quadric Q is mapped into the "null 
cone" of the coordinate metric space M'(P + 2, r + 1, 
s + 1) spanned by ZIl, ZP-I-1, Zp-I-2 and with a metric tensor 

(2.9) 
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Since the points belonging to the space-time are in the 
quadric Q, these points are all mapped into the null 
cones of M'(P + 2, r + 1, s + 1). This fact means that the 
null vectors of the space M' (p + 2, r + 1, s + 1) are more 
likely to be associated with physical reality than any 
other. 

The transformations of coordinates in M'(P + 2, r + 1, 
s + 1) induced by the projective group are 

(a) Z'1l = All zv + _1_ (Zp-I-l + ZP-I-2)AjJ 
".J2 ' 

1 .J2 
Z'p-I-l =ZP-I-l + -1) All ZPAv +-1) AIlAvyO . ../2 Il" P 4 IlV , 

1 .f2 
Z'P T 2 = Zp-I-2 --1) AI' ZPAv - -1) AjJAvyO ,fi IIV p 4 Il" , 

(b) Z'1l = ZIl, 

Z'P-I-l = t (C + 1/C) ZP-I-l - ~ (C -l/C) ZP T 2, 

(c) Z'1l =ZI', Z'p+l = ZP-I-l, Z'p+2 =-Zp-I-2. 

Although the construction of M'(P + 2,r + 1, s + 1) from 
M(p,r, s) holds globally, the relations to the space-time 
R4 embedded in M(P, r, s) are local. The infinitesimal 
transformatiqns of the above group are obtained from 

C = 1 + E, 

where EjJ v' Ell , E are infinitesimals of the same order 
and EIlV = - EVjJ. 

Neglecting second order infinitesimals, the infinitesi
mal transformations corresponding to (a), (b), (c) are 

(a) Z'1l = ZIl + Ell zv + _1_ (Zp-I-l + ZP-I-2)EIl, 
v .f2 

Z'P-I-l = ZP+l + _1_ ZIlE 
.J2 11' 

Z'P+2 = Zp,2 - ~ ZIlE 
.f2 Il' 

(2.10) 

(b) Z'P-I-l = ZP-I-l - EZP-I-2, 

Z' p-I-2 = Zp-I-2 - EZP-I-l, 

(c) Z'1l = ZIl, Z'P+l = ZP-I-l, Z'p-I-2 = - Zp-I-2. 

The transformations (a) and (b) can be written in the 
compact form 

Z' Il = ZIl + UI', } 
/J., Il = l···p + 2, 

Ull = EllvZV, . 
(2.11) 

and 

USing (2.9) we get EIlV = - EVil, /J., Il = l···p + 2. On 
the other hand, conSidering that the quadratic form 
ZIl ZIl (/J. = 1· .. P + 2) is also invariant under the re
flections one concludes that the transformations (2.10) 
plus reflections belong to the improper homogeneous 
group of isometries of M'(P + 2, r + 1, s + 1), OCr + 1, 
s + 1). Note that the rotations in the planes (/J., Il), 
(/J.,p + 1), (/J.,P + 2) correspond to the subgroup (a) 
per, s) of C(r, s). The rotation (p + 1,p + 2) corresponds 
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to the dilatation (b) and the reflection ZP .. 2 corresponds 
to the inversion (c). 

3. CONFORMAL EMBEDDING BUNDLES 

The relation between the coordinates of M'(p + 2, 
r + 1,5 + 1) and those of M(P, r, 5) is given by 

Zil = yOXIl, 

Zp.,2 = ;; (1 - ~XIlXIl)' 
(3.1) 

Such relation is covariant under C(r, 5) and this means 
that although the isometric embedding space M(P, r, 5) is 
not invariant under the group C(r, s) the new coordinate 
space M'(P + 2, r + 1,5 + 1) is. For that reason we call 
M'(P + 2, r + 1,5 + 1) the conformal embedding space of 
R4. If the number t == p - 4 is the embedding class of 
R4, the conformal embedding class will be t + 2 = P - 2. 
The conformal embedding bundle is the manifold 

/3 = (M'(P + 2, r + 1,5 + 1),R4, IT), 

where M'(p + 2, r + 1,5 + 1) is the fibre, R4 the base 
space and IT:M'(P + 2, r + 1,5 + 1) ---7 R4 the projection 
map. 

As we have seen the homogeneous fiber group of 
/3, OCr + 1,5 + 1), induces the conformal group C(r, 5). 
The group OCr + 1,5 + 1) IR4 defined as the subgroup 
of 0 (r + 1,5 + 1) under the condition (2.6) induces 
the group C(r, s) IR4 which, as we have seen, induces the 
group of conformal motions in R4. Therefore, OCr + 1, 
5 + 1) IR4 is the subgroup of the fiber group which gives 
the conformal motions in space-time. 

The space-time conformally embedded in M(P + 2, 
r + 1,5 + 1) is defined in the Gaussian system by the set 
of conditions x A = 0, yO = 1. The relations between 
tensors in M(P + 2, r + 1,5 + 1) and in R4 are obtained 
with the use of the Gaussian system of M(P, r, 5). Before 
that let us consider a few relations. From (3.1) 'Ne obtain 

azp.,l yO azp.,2 yO 
--= 

ax" /2 x"' 
--=--x 
ax" ../2" (3.2) 

and from the inverse of (3.1) 

Xil = Zll IYo, Xil X =../2 (ZP .. 1 - ZP"2) 
Il yO ' 

1 yO = _ (ZP.,l + Zp.,2), 
,f2 

we get 

aXil 1-.. o~. 
az" yO 

However, when yO is an independent parameter, 

azp+1 axp yO axp 
l=----=-X --, 

axp azp.,l ../2 p azp.,l 

so that 

aXil ..f2 Xil --= 
azp.,l yO XPXp 

Similarly, 

aXil ../2 Xil --=--
yO XPXp 
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From (3.3) we also get 

X XIl =.,f2 (1 _ az
p 

.. 
2

) 
Il p .. 1 2Yo azp .. 1 ' 

X XIl = _../2 (1 _ aZP .. 
l

) 
Il p .. 2 2YO azp .. 2 

ayO =../2 (1 + aZP.,2) aYO = /2 (1 + zz:::). 
azp.,l aZP.,l' azp .. 2 

But from (3.2) and (3.5), azp .. 2IazP" l = -1, so that 

~ = ~ = 0 as expected and X"Xllp 1 
azp .. 1 azp .. 2 .. .. 

= - XIlXIl p.,2 = ./2IYo. 

Now, contraction of (3.2) with aXil lax" gives 

ZP .. l = azp.,l ax" = yO X X" 

" ax" ax" /2 v "' 
(3.7) 

ZP .. 2 = azp+2 ax" = _ yO X yv . 

" ax" ax" ../2 11"" 

On the other hand, contraction of (3.4), (3.5), and (3.6) 
with ax" /dXIl gives 

ax" = ax" axp _ 1-.. x" 
aZIl axp aZIl - yo 11' 

ax" ax" axp ../2 Xpx p" 
--= -----= - ---
azp+l axp azp+1 yo XIlX

iJ 

(3.8) 

ax" ax" axp ../2 XPx p" --=-----=-----
azp+2 axp azp+2 yo XiJX 

iJ 
The objects given by (3.7), (3.8) are the elements of 
the Jacobian matrix of the transformation between the 
Gaussian and the ZiJ coordinates in M'(P + 2, r + 1, 
s + 1). Therefore, they relate the components of tensors 
from one to the other system. Thus, if U = (UiJ, UP+l, 
UP .. 2) is a vector in M'(p + 2, r + 1,5 + 1), the p 
Gaussian components of the same vector are 

~" = ax" Ull + ~ UP .. 1 + ~ up+2 
aZiJ azp.,1 azp .. 2 

and, in particular, the space-time components are 

~il = (1-.. axi Ull +../2 XPx/ (UP .. 1 - UP .. 2)) I R4' 
R4 yO aXiJ yO XIlX 

Il 

In the case where U is an infinitesimal generator of a 
transformation (2.11), then (2.11) and (3.3) gives 

Upt1 - Up+2 = (€~t1 - €t"'2)ZiJ + €P+lp+2 Zp+2 - €p+2 ptl ZP+l 

2Yo yO 
../2 €IlXiJ + 10 ../2 XiJX iJ , 

and 

UiJ = lOll zv + €iJ 1 Zp.,l + €iJ 2 Zp+2 = yO(€iJ XiJ + €iJ), 
v P+ P" v 

so that 

~" = x" X"€1l + (~X" + 2X
p

x
p 

X) lOll + XPx "10 
Il v iJ xvX" iJ P (3.9) 

from which we obtain the conformal Killing vector field 
in R4, ~ il R 4' Observe that the resulting components are 
independent of yO. 
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Defining the functions 

ax a axil 
Eall = -- -- Efl lJ

, (3.10) 
aZIl aZ lJ 

we can count the various transformations induced in R4: 
Eijl R4' EiA I R4' The transformations EtA I R4 are as
sociated with translations in R4, obtained from group 
contractions. To this end we define the translation 
parameters 7T i == a A EiA where a A are appropriate func
tions of the space-time curvature which vanish in the 
flat limit. We can write ~a in terms of Eall: 

~a == Ea ll(Zfl 6 Zfl + ZP+l ll ZP+1 + ZP+2 1l Zp+2) 

_ E"ll (Y02X~X + yO Xfl X (Zp+1 - ZP+2»); 
- Il v':2 Il fl 

therefore, the basic condition (2.6) is equivalent to 

(3.11) 

4. CONFORMAL SPINORS 
The construction of conformal spinor fields follows the 

same process used to constructisospinors. The only 
difference is that now we use as the algebra space the 
fibers of the conformal embedding bundles M'(P + 2, 
r + 1,s + 1) instead of M(p,r,s). The Clifford algebra 
e n1 . s+1 constructed on M(P + 2, r + 2, s + 1) is gen
erated by p + 2 elements ell' ep +l> ep +2 such that 

e(1l elJ) =='T/~lJ' f.l,II=l···p +2, (4.1) 

where 'T/~lJ is given by (2.9). The group of automor
phisms of such an algebra is isomorphic to O(r + 1, 
s + 1) when p + 2 is even and isomorphic to SO(r + 1, 
s + 1) when p + 2 is odd. To obtain the spinors we use 
the same Weyl representation as in the case of isospinors 
which is given by the matrices P a' Q a' Po (a = 1· .. v) 
[Ref. 1, expression (IV. 2)]. 

The final representation is obtained by choosing the 
matrices P a' Q a' Po to represent the algebraic gen
erators e . By renaming these matrices we get equiva
lent repr:sentations. Having chosen this representation 
the Lie algebra of the group of automorphisms is given 
by the generators 

LflV = !e[flelJj' f.lll = 1 '" p + 2, 

which satisfy the commutation relation 

(4.2) 

[Lfl"Lpo]=-i('T/flpLvo +'T/voLflP -'T/floLuP -'T/upL flO )' 
(4.3) 

which are the same as those of the Lie algebra of 
O(r + 1, s + 1) or SO(r + 1, s + 1) according to the case. 
The covering group of each of these groups is generated 
by the matrices 

S = 1 + ~EIlVLflV' (4.4) 

As in the case of isospinors these matrices are not 
always Hermitian and they satisfy a relation of the type 

M = ±StMS, (4.5) 

where M is a characteristic of the covering group, and 
the signs( +) hold for proper transformations while (-) 
holds for improper transformations. At the end of this 
paper we give a table with the covering groups of the 
conformal groups in general relativity, based on the 
Weyl representation. 

In order to relate the algebraic elements of e r +1 s+1 
to R4 we take the p Gaussian algebraic elements . 

e a = Zl'aefl' f.l = l···p + 2. (4.6) 
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They satisfy 

e(aell) = Zfl aZflll'T/~v = gall' f.l, II = l···p + 2, 

and e(ie j ) = giJ(R4). On the other hand, we have 
ea = g a6 ell = ga 6Z fl ll efl (f.l = l···p + 2). But since 

axa axil 
g"6.=----'T/'flv, l-I,v==1···p+2, (4.7) 

aZfl az v 
we have 

f.l,II,p=1···p+2, 

and 

f.l, II = l···p + 2. 

On the other hand, the Gaussian components of the Lie 
algebra operators are 

f.l=1···p+2, (4.8) 

which satisfy the commutation relation 

[LaIlLyo] = - i(gayLIJ{> + glloLay - gao Lily -gil., Lao)' 
(4.9) 

The translation operators can be defined as it i = Ci AL iA' 

where also CiA vanish in the flat limit. 
The commutators between LiJ ' LAB' 1f1 are derived di

rectly from (4.9) and it can eaSIly be seen that in the 
flat limit they give the Lie algebra of the conformal group 
in Minkowski space-time. A further step in the representa
tion of the Clifford algebra leads us to the conformal 
spinors. In short, we consider a left ideal of the Clifford 
algebra generated by a specific element ¢o E er +1 • s +1 ' 

This ideal defines a linear map t/I(X) = X¢o for all 
X E e r+ 1. s + l' Restricting this map to the set of inver
sible elements of the Clifford algebra, we obtain the 
spinor representation of the Clifford algebra 6. Under 
this representation where efl is one generator of the 
algebra, we can decompose t/I(e

fl
) in the product 

¢(e ) X (e ). Since e' = SeflS- 1 then t/I(e') = SeflS-l¢o· 
We flean always eh9o~e ¢o so that S-l¢OS = ¢o' Defining 
A-I = S-l¢O and A =_ ¢oS, then the above condition is 
equivalent to A-I =:: A-I, which indicates the double 
valuedness of the spinor representation of the group of 
automQrphisms, given by the elements A and ii. Taking 
t/I(e~) = Sell¢oS-l = St/I(efl)S-l, then for t/I(e~) = 

¢(e~) X (e~) we get the spinor transformations ¢(e~) = 
S¢(e

ll
) and X (e~) = X (e,)S-l. The spinors transforming 

like ¢ are covariant spinors and those transforming 
like X are contravariant spinors. When a Weyl represen
tation of the algebra is given, ¢ and X are column and 
row matrices, respectively. The spinor space has dimen
sion 2 v with 11== (p + 2)/2 whenp is even and 11= (p + 1)/2 
when p is odd. When p is even we can split the spinors 
in two equivalent halves called semispinors7 provided 
one considers only the group SO(r + 1, s + 1) acting on 
the space M'(P + 2, r + 1, s + 1). If the group O(r + 1, 
s + 1) is to be considered (that is with reflections in
cluded) as it is in the case of conformal groups then 
semispinors may occur when v is odd. 

Since the isometric embedding classes in general 
relativity are at least 4 (flat case) and at most 10, the 
conformal embedding classes vary between 6 and 12 
and the cases of II odd are P + 2 = 6,7,10,11. However, 
for p + 2 = 8 semispinors will also take place thanks to 
the triality principle of eight dimensional Clifford 
algebras. 8 ,9 

The conformal spinors are obtained from this repre
sentation of e r+l. s+l by imposing on the spinor group 
the same restriction (2. 6) applied to the group O(r + 1, 
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s + 1). In other words, as the spinor group forms a 
representation of O(r + 1, s + 1), the conformal spinor 
group is the corresponding representation of O(r + 1, 
s + 1) IR4 • More explicitly, the conformal spinor group 
is the group generated by the infinitesimal matrices 

SlR4 = 1 + ~ E~vL/lv [R4' (4.10) 

It follows from the results in the preceding sections that 
this group forms a double-valued representation of the 
conformal group of the space-time R4. The spinors 
defined on M'(p + 2, r + 1, s + 1) which transform under 
the group generated by (4.10) are called the conformal 
spinors of R4. Since the group of conformal motions 
in R4 is induced by O(r + 1, S + 1), strictly speaking, 
conformal spinors can only be defined in space-times 
with even-dimensional embedding space (p even). This 
is due to the fact that one of the reflections included in 
O(r + 1, S + 1) is responsible for the inversion of the 
conformal transformation. Nevertheless, if we consider 
restricted conformal transformations (without the in
version), then conformal spinors in odd dimension em
beddable space-times can also be constructed. 

Now we conSider the problem of relating conformal 
spinors to space-time. The vector U in M'(p + 2, 
r + 1, S + 1) corresponds to the algebraic element 
U == Ul"e li + Up+1 e p+1 + Up+2 e +2' In the spinor repre
sentation of the algebra this algebraiC element gives 
a 2 v x 2 v matrix or rank two spinor whose elements are 
denoted by ljIAB (capital italic spinor indices run from 
1 to 2v or from 1 to 2 v-1 in the case of semi-spinors). 
The dot over one of the indices means that the trans
formation corresponding to that index is the complex 
conjugate of the transformations of the undotted index. 
The relation between ljIAB and U/l is given by 

l/IAB==eI"ABU~, /1==I"'p+2, 

where eJl AB are the spin-tensors associated with each 
generator e(' of the algebra. Conversely, given the rank 
two spinor 1J.IAiJ we get a vector with components 

U/l=e'I"AiJl/IBA, /1=1···p+2, 

where spinor indices are raised and lowered by the two 
versions of the metric spinor E AB, E AB' The p Gaussian 
components of the spin-tensors are defined by 

(4.11) 

These spin tensors connect spinors to vectors in the 
Gaussian frame of M(P, r, s): 

(4.12) 

From which we can obtain the relation between space
time vectors ~ i(R4) and conformal spinors. We note 
that the space-time as well as M(P, r, s) is entirely con
tained in the null cone of M'(P + 2, r + 1, s + 1) so that 
only conformal spinors aSSOCiated with null vectors of 
M'(P + 2, r + 1, s + 1) have physical interest. 

Let U be a vector in M'(P + 2,r + 1, s + 1), and ~a == 
(axCi./aZJl)U~ (/1 = 1"'P + 2). Then UJlU

Il 
= ~Ci.~Ci. (/1;::: 

1· .. P + 2). Thus if t;a is a null vector defined in space
time, t;A == 0 and UJlUI" == ~it;i = O. Therefore, null vec
tors in space-time are associated with physical confor
mal spinors. On the other hand, if U/lUI" = 0 then 
~i~iIR4 = - ~A~AIR4' 

Therefore, the conformal spinors associated with U,., 
although possibly having a physical character, do not 
necessarily correspond to a null vector in space-time. 
This fact seems to have significance in a possible 
future application of conformal spinors to Penrose's 
angular momentum quantized physical manifold.10 
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The simplest example of conformal spinors which may 
occur in relativity is that of the case of Minkowski space
time. In this case the minimal isometric embedding 
M(4, 3, 1) coincides with the space-time itself. As a 
consequence the resulting spinor structure is globally 
defined in this space:"time (a peculiarity of this ex
ample). The conformal embedding space is M'(6, 4, 2) 
whose homogeneous group of isometries 0(4,2) induce 
the conformal group of M(4, 3; 1). Observe that the 
condition (2.8) here is trivially satisfied so that 
0(4,2) [R4 = 0(4, 2). The Lie algebra of this group is 
gi ven by L JlV = ! e [~ e v] where e are the generators of 
the Clifford algebra defined on M(6, 4, 2). Taking the 
Weyl representation e1 = i Pl' e2 = iQ2, e3 = P2, 
e4 = P3' e5 = P 4, e 6 = Q3, we obtain the Lie algebra 
of the covering group SU(2, 2). The elements of the Lie 
algebra in such representation take the form 

L," = (L;~' I L;:') ; 
since p + 2 is even and II is odd we can consider semi
spinors and the Lie algebra of the covering group are 
given only by L~;) (or equivalently by L:~»). They 
satisfy the commutation relations 

[L(l)L (1)] == - i(rl' VI) + 1/ L(1) -1/ L(l) -1/ L(1)) 
iJU po iJP vO vo IlP /l0 up vp 1'0 ' 

[LW LW] = - i(1/iJpL~~ - 1/ vpL~1J), 

[L(l)L(1)]==-i(7l L(l)_7l L(1» 
~v p6 "/lP v6 ·'vp,.6' 

[L (1) L (1)] == 0 [L (1) L (1)] = _ [L (1) L (1)] = _ iL(l) 
~V 56 , /l5 u5 /l6' v6 iJv' 

(L (1) L (1)] __ . L(1) 
1"5 v6 - 11/YIl 56' 

[
L (1) L (1)] - _ 'LO ) 

1'6 56 - 1 /i5' 

Defining ft~ = 0/5L/l 5 + O/SL/l S ' 0/5, O/S constants, then 

[L~~)~p] = - i(1/lip Py -7JupP)J.)' 

[ ~ I' ft J = 0 [ 11 I' L ~lJ ] = - iii I" 

which shows that the rotations in the planes ((.1,5), ((.1,6) 
give translations in M(4, 3, 1). 

The resulting four component (semi) spinors can have 
a one-to-one relationship to Penrose's twistors. Let 
~ i be the four components of a twistor of valence [6], 
and cpA a covariant conformal spinor. We set t;1 = cp1, 
~2 == cp2, ~3 = cp3, ~4 == cp4. 
The twistor conjugation is an operation defined by 

~1 = ~*3, ~2 =t;*4, ~3 = ~*1, ~4 == ~*2, 

where the * means complex conjugation. The result is a 
twistor of valence [b]. 

In terms of conformal spinors this conjugation cor
responds to the operation cP = cp·K where 

As cp is represented by a column matrix, cf> is repre
sented by a row matrix. Twistors are classified as 
right-handed, null, or left-handed according to whether 
rpcp = <p tK<P is positive, zero, or negative, respectively. 
This classification may be extended to conformal spinors 
in general but for each value of p + 2 the matrix K has 
to be redefined. 
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Let us consider another example of conformal spinors, 
this time in general relativity. The obvious example 
would be the case of Schwarzschild space-time. How
ever, the group of conformal motions in this case reduce 
to ordinary motions, as a consequence of the static con
dition. ll This means that the conformal spinors in 
Schwarz schild space-time should coincide with the 
isospinors in the same space-time. 

However, if we take the maximal analytic extension 
of this space-time, that is Kruskal's space-time, it 
ceases to be static in the region interior to Schwarzschild 
radius and genuine conformal motions take place 
(taking 2m == 1 this region is characterized by r < 1). 
The isometric embedding class of Kruskal space-time 
is M(6, 5, 1) and the embedding is given by the functions 12 

Xl == 2(1 - 1/r)1/2 sinh (t/2), X2 == 2(1 -1/r)1/2 cosh(t/2), 

X3 == J T (r2 + r + 1)1/2 dr 
1 r3 ' 

X4 == r cose, X5 == r sine coscf>, X6 == r sine sin4>, 
such that 1]'lIvXII XU 1M == XI'X

II 
IR4 == f(r), where 1]'1'11 == diag 

(-+++++) and 

[f " (r' + r + 1) 1/2 J 2 f(r) == 4(1 -1/r) - 1 r3 dr + r2. 

We take the Gaussian coordinates to be xl == r, x2 == e, 
x 3 == cf>, x4 == t and x 5 == X2 + a, x 6 == X3 + b where a 
and b are constants chosen so that the space-time R4 
is defined by x 5 == x 6 = O. From the functions XI' (xa ) 

and x a (XII) we obtain the elements of the Jacobian 
matrix: axl' /ax a , axa /axIJ. Then as indicated by 
(3.7), (3.8) we get the elements aZI'/axa , axa./azlJ • 

The conformal embedding space is M(8, 6, 2) with a 
metric tensor 1]~1I == diag (-+++++-+). The Weyl re
presentation for the Clifford algebra ~6, 2 is 

el == iPl , e 2 == P2 , e 3 == P 5 , e 4 == P 4 , e5 == P 3 , 

e6 == Q4' e7 == iQ2' es == Q3' (4.13) 

As in the previous example the operators of the Lie alge
bra of O(r + 1, s + 1) are represented by matrices like 

L (2»)' 
IJU 

/.L, V:::: 1···8 

and the generators of the spinor group are 

S::::1 +i EIiUL IIII , /-I,v::::1. .• 8, 

having the characteristic matrix 

(4.13 ') 

We denote such spinor group by SU(I, 1) lSi SU(4, 4). To ob~ 
tain the conformal spinor group we have in the first place 
to consider the condition (2.6) or (3.11) which in the case 
of Kruskal space-time has the coordinate free solution 

E23 == (24 :::: E25 == E26 :::: E34 :::: E35 :::: E36 == 0 
(4.14) 

E2 == E3 == (4 == (5 :::: E6 :::: O. 

Furthermore, since we have an eight-dimensional space 
M(8, 6,2) we can use the triality principle to obtain eight 
component semispinors whose spinor group is only 
SU(4,4). Therefore, the conformal spinor group of 
Kruskal's space-time is SU(4, 4)1 k-r defined by (4.14). 

It is interesting to notice the change in the group 
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structure when we compare the conformal groups in 
Schwarz schild and Kruskal space-times. As the 
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Schwarz schild singularity is shrunk to the origin to 
produce Kruskal's space-time, genuine conformal motions 
appear. This seems physically reasonable if we con
sider that the Schwarz schild solution produces an inertial 
effect on test particles and these massive particles could 
not with~tand conformal motions. Finally, we remark 
that the same applications which were mentioned for 
isospinors also hold for conformal spinors; in par
ticular, the use of conformal spinors for a possible 
theory of conformally covariant structure of elementary 
systems in general relativity. These would be obtained 
by the classification of the continuous unitary irreducible 
representations of the various conformal spinor groups. 

In this respect it is interesting to notice that in the 
last example the group SU(3) appears as a subgroup 
of the fiber group of Kraskal's conformal embedding 
bundle but it does not appear in the fiber group of 
Schwarzschild's embedding bundle, as if the appearance 
of group SU(3) in the case were a consequence of the 
shrinking of Schwarz schild 's singularity. 

APPENDIX 
In the following table we give the various conformal em
bedding spaces which may occur in general relativity, the 
homogeneous Uber groups O(r + 1, s + 1), the spinor 
groups, and some important subgroups. The notation used 
for the groups is the same as in the isospinor paper. 

TABLE 1. Conformal embedding spaces, spinor groups and subgroups. 

/' + 2 Conformal (Spinors) Main "Little Important 
embedding covering groups" subgroups 

group 

M'(6,4,2) SU(2,2) 

8 M'(8,6,2) SO(4,4) SU(4) 
8 M'(8, 5, 3) SL(8,C) SU(2, 2, 2, 2) SU(2) x SU(2) 

M'(8,4,4) SO(2, 2, 2, 2) SU(2) x SU(2) 

10 M'{lO, 8, 2) SO(8,8) SU(8) 
10 M'(lO, 7, 3) SL(16 C) SU(4, 4, 4, 4) 

M'(10, 6, 4) 
SU(2, 2, 2, 2, 2, 2, 2, 2) 

10 SU(4, 4, 4, 4) SU(4) 
10 M'(10, 5, 5) SL'(16 C) SU(2, 2, 2, 2, 2, 2, 2, 2) SU(2) x SU(2) 

12 M'(12, 10, 2) SU(16,16) SU(8) 
12 M'J12, 11, 3) SL(32, C) SU(8) 
12 M'(12, 8, 4) SU(8, 8, 8, 8) SU(S) 
12 M'{l2, 7, 5) SL'(32,C) SU(4) 
12 M'(12, 6, 6) SU(4) 

Note that all spinor groups in the table are semispinors. 

SL'(16 C) differ from SL(16, C) by the fact that 
SL'(16 C) does not contain the "little group" SU(4, 4, 4, 4). 
Also SL'(32, C) and SL(32, C) differ in their "main little 
groups". 
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2R. Penrose, 1. Math. Phys. 8, 345 (1967). 
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·A. Gamba, J. Math. Phys. 8, 775 (1967). 
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We present the special relativistic Kerr congruence from two new points of view. The importance of 
the Kerr congruence stems from its role in the general relativistic rotating body problem. In the 
special relativistic limit, it is the simplest twisting generalization of the ordinary light cone. We first 
show that the Kerr congruence can be obtained from the light cone of complex Minkowski space, 
which induces a family of oblate spheroids in real Minkowski space. We then show that the rigid 
rotation of one of these spheroids with constant angular velocity also generates the Kerr congruence 
by shining comoving flashlights normal to the surface. In fact, the oblate spheroid is the unique 
surface which generates a shear-free twisting null congruence in this manner. This result has direct 
generalization to the full Kerr geometry. 

1. INTRODUCTION 

In this paper, we report a curious result which appears 
to have important bearing on the relativistic theory of 
angular momentum. Our work originated from considera
tions of the Kerr metric! which describes the general 
relativistic geometry exterior to a rotating axisymmetric 
body. Associated with the Kerr metric is a shear-free, 
twisting congruence of null geodesics. In terms of the 
tangents k" to these null geodesics, the Kerr metric 
may be expressed in the Kerr-Schild form 2 

g"u =: TI"u + 2Hk"ku 

where Tlflu is the Minkowski metriC, 

kfl _ (1 _ (rx + ay) _ (ry - ax) _ ~) 
- , r2 + a2 ' r2 + a2' r ' 

2H =: 2mr3 /r 4 + a2 z 2 ), 

and r is defined by 

(x2 + y2)/{r2 + a2) + z2/r 2 = 1. 

(1.1) 

(1.2) 

(1.3) 

Here we consider the flat-space limit of this congruence 
obtained by setting the mass of the Kerr geometry equal 
to zero. This induces a shear-free, tWisting, geodesiC, 
null congruence in Minkowski space, referred to as the 
special relativistic Kerr congruence.2 

It is well known that shear-free, twist-free, geodesic 
null congruences in special relativity are generated 
by the light cones emanating from a time like world line. 
These congruences form null hyper surfaces whose null 
rays are orthogonal to families of two-dimensional 
spheres. The congruences attached to nonaccelerating 
world lines are the zero twist limit of the Kerr con
gruence. In keeping with general relativistic nomencla
ture, we refer to this limiting case as the Schwarzschild 
congruence. In Sec. 2, we show how the Kerr congruence 
can be interpreted as a complexified version of the 
Schwarz schild congruence. From this point of View, 
the Kerr congruence corresponds to the light cone of an 
unaccelerated world line in complex Minkowski space. 

From the point of view of real Minkowski space, the 
Kerr congruence, due to its twist, does not form null 
hypersurfaces. Consequently, the Kerr congruence does 
not have a simple physical interpretation as does the 
Schwarzschild congruence which can be generated by 
flashing light rays normal to the surface of a sphere. 
However, in Sec. 3 we present our main result that the 
Kerr congruence can be generated by flashing light 
rays "kinematically normal" to' the surface of ~ rigidly 
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rotating oblate spheroid (ellipsoid of revolution). In 
[act, the Kerr congruence is unique in this regard. No 
:>ther axisymmetric surface rigidly rotating about its 
lXis generates a shear -free congruence. 

Because of the invariance of shear under the addition 
of the kpkv Kerr-Schild term in Eq. (1.1), this result has 
immediate generalization to the full Kerr geometry. In 
that case, the spheriodal shape must be interpreted in 
terms of the Minkowski geometry used as a background 
geometry. Some general relativistic aspects of this 
result are given in Sec. 4. 

These spheroids also enter in a natural way in treating 
the light cone with complex vertex. For this reason, 
we first present the Kerr congruence from the complex 
point of view to facilitate its later identification as the 
congruence generated by rotating spheroids. 

2. THE COMPLEX POINT OF VIEW 
The light cone of (real) Minkowski space, which 

plays such a dominant role in much of phySiCS, has an in
teresting generalization to complex Minkowski space. 

Complex Minkowski space is a four-dimensional com
plex manifold endowed with a complex line element and 
a ten (complex) parameter set of isometries. In natural 
coordinates (the analytic extension of real Minkowski 
coordinates) the metric has the form 

(2.1) 

where Tl1w =: diag (1, -1, -1, -1) and Zfl =: x" + iy". The 
invariant distance from a fixed point ~ to an arbitrary 
point z, 

S2 = (z - ~). (z - ~), (2.2) 

determines the complex light cone with apex ~ by the 
condition 

52 = O. (2.3) 

(Obviously, in the real case this is the ordinary light 
cone.) Here we are interested in the intersection of real 
Minkowski space with the complex cone, Le., with those 
z" =: Xfl which satisfy (2.3). We can take, with no loss 
in generality, the real part of ~" to be zero (by a real 
Poincate translation) and the spatial components of the 
imaginary part of ~jI to be along the x 3 == z axis (by 
a real rotation). ~fl then has the form 

~p = iEO~ + iao~ 
and Eqs. (2. 2) and (2.3) become 

x 2 + y2 + z2 - t2 - a2 + E2 - 2i(za - Et) = 0, 

or, since all the variables are real, 
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(2.4) 
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x2 + y2 + z2 = [2 + a2 - 10 2 , 

za = El. 

Notice that there are no real solutions of (2.5) if 

(2.5) 

10 2 > a2 and thus the effective range of 10 is from -a to 
a. For fixed 10 (in this range)(2. 5) represents an ex
panding circle which is parallel to the x - y plane. (The 
two limiting cases 10 == 0 and 10 = ± a are respectively 
a circle expanding in the x - y plane and points moving 
along the positive and negative z axis.) 

We thus see that the real manifestation of the complex 
cone around the fixed point ~Il involves only a very 
limited region of (three-dimensional space. If, however, 
we "thicken" the complex cone by simultaneously allow
ing all values of 10, we obtain a surface which expands 
to fill all of space (a hyperboloid in space-time). Ex
plicitly, by eliminating 10 in (2.5), we obtain the surface 

(x2 + y2)/(t2 + a2) + z2/t2 = 1, (2.6) 

which at the limiting value t == 0 is a disk, z = 0, x 2 + 
y2 "" a2, and which becomes an expanding ellipsoid for 
increasing t. Eventually, as t -> 00, it approaches a 
sphere. It is clear that (2. 6) represents a time like 
hypersurface (hyperboloid) in space-time. In the limit 
a ...., 0, the hyperboloid becomes the conventional light 
cone generated by radial light rays. 

We now show that the hyperboloid can, in a similar 
fashion, also be generated by a family of (real) light rays. 

The basic idea is to find a congruence of light rays 
connecting the family of ellipsoids obtained by varying tin 
Eq. (2.6). For infinitesimal variations, Eq. (2. 6) requires 
that the differentials connecting the ellipsoids satisfy 

xdx + ydy + zdz(1 + a2t-2) - z 2a2 t-3dt = tdt 
or 

xx + yy + zz(1 + a2t-2) - z 2a2t-3 = t, 

wher (x,y,z)::: (dx/dt,dy/dt,dz/dt). 

(2.7) 

The condition that the differentials piece together to form 
straight lines is (x,», z) ::: O. The derivative of Eq. (2. 7) 
then implies 

x 2 + y2 + z2(1 + a2t-2) - 4zia2t-3 + 3z 2a2t-4 = 1-

The condition that these straight lines be null is 
(2.8) 

.rllxll = 0, (2.9) 

wherexil = (1,x,y,z). Equations (2.7)-(2.9) algebraically 
determine the direction of light rays leaving the ellipsoid 
corresponding to a given value of t. Their solution is 

. (: -.«Ji ± Ix ax ± ty ± z) 
XII::: 1 , ,-, 

, a2 + t2 a2 + t2 t 
(2.10) 

with t given by Eq. (2. 6). (Due to the reflection symmetry 
of the ellipsoids there is also another solution a->-a 
corresponding to the opposite sense of rotation of the 
null rays.) All higher derivatives of Eq. (2.10) vanish 
because of Eq. (2.10) itself so that the light rays sO 
obtained do generate the hyperboloid. 

In the limit a --'> 0, Eq. (2.10) describes the radial null 
congruence tangent to the light cone r2 == x 2 + y2 + Z2 = 
t 2 , namely 

XII = (1,x/r,y/r, z/r). (2.11) 

If the apex of this cone is moved along a straight time
like world line, the vector field (2.11) for each cone 
gives the Schwarzschild null congruence. 
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If we move the complex apex (2.4) of the complex cone 
throughout the 'complex ZO axis, I.e., along the complex 
world line 

zll = <p()~ + ia()~, <P = 7 + iE, 

then the real manifestation of this family of complex 
cones is the family of hyperboloids 

x2 + y2 + z2[1 + a2(t - 7)-2] = (t - 7)2 + a2, 

with the associated null vector field (2.10) (with t re
placed by t - 7). By comparison with (1. 2) and (1. 3), we 
see that (2.10) represents the Kerr congruence when the 
lower sign is chosen. (The lower sign selects an in
coming Kerr congruence and the upper sign an out
going congruence.) 

[This result is a special case of a more general 
theorem. 3 Just as all (suitably regular) shear and 
twist-free null geodesic congruences are defined by the 
light cones from an arbitrary timelike world line, all 
(suitably regular) shear-free but twisting null con
gruences are defined by the complex light cones of an 
arbitrary timelike c0!ll\llex world line, Le., world 
line Zll = ~Il(¢) with ~Il~jl = 1.] 

3. THE ROTATING POINT OF VIEW 
We now change our point of view and consider the 

world tube traced out in Minkowski space by the rigid 
rotation of an axisymmetric 2-surface about its 
symmetry axis. The world tube is generated by 
straight lines tangent to the constant timelike unit vector 
field Ta which pick out the inertial frame in which 
there is no translational motion. In this frame, let 
Xa, yo:, ZO:, Ta be the orthonormal tetrad (signature 
- - -+) parallel to the x,y, z, t axes with za correspond
ing to the axis of revolution. That t ::: const cross sec
tions of the world tube then have unit normals Na and 
unit curvature eigenvectors cp a (tangent to the parallels) 
and e 0: (tangent to the meridians) which satisfy 

cp a::: (xya - yXO:)p-l, 

€la = [za + Na(ZBN
B
)][1 - (ZBN B)2]-1/2, 

where p = (x2 + y2)1/2 and 

eaT" = cp aTa ::: NetTa = N€Xf3 ct = Nacp ct ::: O. 

Here Xct, Yet, Z", and Ta are translational Killing vec
tors and pcp a is a rotational Killing vector. The curva
ture eigenvalues 4 are 

and 
(3.1a) 

(3.1b) 

In the course of time, points on the 2-surface trace 
out world lines with unit four-velocity 

u a = Tct cosh A + <lict sinhA, 

where A is determined by the angular velocity w 

cosh A = (1 - p2 u.,2)-1/2. 

The local rest frame determined by uO: picks out at 
each point of the world tube a spatial tangent plane 
specified by a complex null vector m 0: satisfying 

metm" = m"u ct = rr+:,.NO:::: mJYl" + 1 = O. 

We choose 

,f2ma = aa + i(q,a cosh A + Ta sinhA). 

(3.2) 

(3.3) 

(3.4) 
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We say that a null ray is "kinematically normal" to 
the 2-surface if its tangent vector III satisfies 

111mI' == 111111 = O. 

The null direction III corresponds to the collimated beam 
from a small flashlight oriented at each instant (t = const) 
in the Na direction but moving with four-velocity u a. The 
III direction is not in general orthogonal to the t = const. 
cross sections of the world tube as is the usual geome 
trically normal null direction. Analytically we have 

On the world tube, the shear of the kinematically 
normal null rays is 

a = 1a;Bm<XmB. 

(3.5) 

Because of Eq. (3. 5) and the fact that u is constructed 
from Killing vectors, this reduces to 

a = N a: Bm<XmB • 

If the surface were not rotating, this would lead to the 
usual relation between the shear and the difference 
between the two curvature eigenvalues. 5 In the present 
case, Eqs. (3.1)-(3.4) lead to 

(3.6) 

If we analytically describe the rotating 2-surface by 
the revolution of the curve z = j (P), then the condition 
of zero shear obtained from Eq. (3.6) takes the form 

j" _ 1 
1'(1 +1'2) - p(1 - w2p2) . 

The most general solution to this equation is a portion 
of a conic section. Furthermore, the most general solu
tion which generates a smooth compact surface of revolu
tion is an ellipse with equatorial radius A and polar 
radius B connected by 

(3.7) 

Hence, the most general rigidly rotating 2-surface whose 
kinematically normal null directions are shear-free is 
an oblate spheroid (ellipsoid of revolution) satisfying 
Eq. (3.7) 

The shear-free null directions leaving the surface 
of the spheroid remain shear-free when geodetic ally 
extended to straight null rays. (This follows from the 
propagation equations 6,7 for the optical scalars.) It 
is straightforward to compare the results of this 
section with those of Sec. 2 to verify that the null con
gruence 1 a [Eq. (3.5)] obtained from a rotating spheroid 
coincides with xll [Eq. (2.11)] and is thus a Kerr con
gruence. In particular, by referring to Eq. (2. 6) the Kerr 
parameter a can be related to the equatorial radius and 
angular velocity of the rotating spheroid by 

(3.8) 

Since each Kerr congruence corresponds to a fixed 
value of a, the family of rotating spheroids determined 
by the full congruence has different angular velocities 
for different equatorial radii as determined by Eq. (3. 8). 

4. CONCLUSION 

The relationship which we have obtained between the 
Kerr congruence and rotating spheroids (Kerr spheroids) 
suggests two possible areas of application. 

First, there is the relevance to the general theory of 
twisting, shear-free congruences which playa basic 
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role in twistor theory, which in turn is the theory of 
momentum-angular momentum complexes. The Kerr 
congruence, which we have shown can be represented 
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by unaccelerated, rotating Kerr spherOids, also cor
responds to a special analytic function in twistor space. 
Can more general twistor objects be given physical rep
resentation in terms of accelerating and rotating bodies? 

Second, the oblateness of the Kerr spheroids suggests 
a possible connection with the Maclaurin spherOids, 
which describe the axisymmetric equilibrium configura
tions of rotating fluids according to Newtonian gravita
tional theory. However, the oblateness of the Kerr 
spheroids is due to an aberration effect which is Signifi
cant only at relativistic velocities. Consequently, there 
can be no connection with the Maclaurin spheroids except 
for ultra compact bodies whose rotational deformations 
are small at nonrelativistic velocities. The quantitative 
condition for agreement between the Kerr and Maclaurin 
spheroids follows from the relativistic generalization 
of the Newtonian equilibrium condition 

iw2p2 - V = const on boundary, 

where V is the Newtonian potential. The relativistic 
generalization, derived by Boyer ,9 may be put in the form 

gllv~"~u = const on boundary, 

where ~I' is the Killing vector tangent to the hydro
dynamical streamlines on the fluid boundary. The 
requirement that a Kerr spheroid satisfy Eq. (4.1) 
leads directly to the boundary condition 

gll)ll~u = O. 

(4.1) 

Hence the hydrodynamical streamlines would neces
sarily be lightlike on the boundary. The boundary would 
correspond to the outer Kerr horizon (r = r +). It is 
unlikely that any physically realistic body could be 
hydrostatically supported under those conditions. 

The curved space generalization of our results does 
furnish a convenient characterization of the two prin
ciple null vectors of the Kerr geometry analogous to 
(3.5), 

Here u a is the unit vector parallel to Ta + wcp a, where 
Ta is the time-translational Killing vector, cpa is the 
rotational Killing vector, the angular velocity w is given 
by 

w = a/(r2 + a2 ), 

and the streamlines of u a lie in the world tubes r = const. 
having unit normals Na. 
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An iterative construction of the potential function entering in a regular Sturm-liouville problem 
is discussed. The given data is in the form of two spectra associated with distinct boundary 
conditions at one end point. 

1. INTRODUCTION 

An inverse problem consists in inferring some proper
ties of a given problem from a complete or partial know
ledge of its solution. This definition is rather vague; 
nevertheless, it points out that the difference between a 
"direct problem" and an "inverse problem" is, to some 
extent, arbitrary and its rationale is to be found in the 
historical development of that particular problem. 

Given the canonical Sturm-Liouville problem 

u" + {A - q(x)}u = 0, X E (0, 1), 

u(O) = u(l) = O. 

(1. 1) 

(1. 2) 

the direct problem consists in finding the eigensolutions 
{An' un(x)}~ for a given "potential" q(x). On the other 
hand, there are many instances of vibrating systems in 
physics, geophysics, and engineering which reduce to a 
Sturm-Liouville problem for which the eigenvalues (or 
normal frequencies) can be measured directly (at least 
insofar as the lowest ones are concerned). The real 
problem then consists in deducing q(x). This problem 
could be referred to as the inverse problem. However, 
in 1946, Borg 1 has shown that the knowledge of a single 
spectrum {An}~ is not sufficient to determine q(x). 

Since then, two not altogether equivalent inverse 
Sturm-Liouville problems have been considered in the 
literature. In both versions, q(x) is thought out, but these 
two versions differ insofar as their starting point is con
cerned. 

One approach, which has become mostly associated 
with the names of Gel'fand and Levitan,2 uses a spectral 
function p(A) as a starting point. If u(x, A) stands for the 
solution of (1. 1) which satisfies the following conditions: 

u(O, A) :::: 0, 

u'(O, A) = 1, 

and if we define 

F(A) = t f(x)u(x, A)dx, o 

(1. 3) 

(1. 4) 

(1. 5) 

where f(x) is an arbitrary real L 2(0, 1) function, then the 
spectral function can be defined by writing Parseval's 
theorem as follows: 

g j2(x)dx = L: F2(A)dp(A). (1. 6) 

Clearly, 

p(A):::: 2) <1: u2 (x, A,,)dxt 1, 
An<'A 

(1. 7) 

and insofar as the regular Sturm-Liouville problem is 
concerned, the knowledge of p(A) is equivalent to the 
knowledge of the eigenvalues {A }r and {fo1 u:{x)dx}r, 
where the eigenfunctions {un(x)f~ have been normalized 
by means of (1. 4). 
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The other approach to the inverse Sturm-Liouville 
problem consists in using two spectra as the starting 
point. In other words, in addition to {An}~' which is 
associated with (1. 1) subject to (1. 2), we assume that 
another spectrum, say {~n} 'i', associated with a differ
ent pair of boundary conditions, such as 

u'(O) :;::: u( 1) :;::: 0, (1. 8) 

is also known. Indeed, Borg 1 Marcenk03 and Levinson4 

have proved that two spectra such as {An}r and {J1.n}~ 
are necessary and sufficient to determine q(x). This 
approach might seem more artificial than the one based 
on the spectral function, Since it required some know
ledge about two different eigenvalue problems. However, 
this is subjective to a certain extent and there are 
various instances in which the two spectra [and in par
ticular those associated with the canonical boundary 
conditions (1. 2) and (1. 8)] arise quite naturally (cf., 
e.g., Ref. 5). Furthermore, given two spectra, one can 
easily evaluate {if> u2(x, An)dx}~ and cast the problem 
in terms of the spectral function. 6 Be that as it may, 
we shall adopt the second approach and assume that 
we are given two spectra. 

The problem of investigating the existence of a func
tion q(x) for a given pair of spectra {An}~ and {J1.n}~ 
was taken up by Krein. 7 ,8 His approach, which relies on 
the theory of continuous fractions and on positive func
tionals, is extremely ingenious. Given two sequences 
{An}r and {lJ.n}~ such that 

lim (1J.,,/n 21f2) = lim An/n21f2 :::: 1 (1. 9) 
n-+OO n~ 

and 

0< 1J.1 < A1 < J..l2 < .. " (1. 10) 

Krein first constructs the meromorphic function 

<Q (I-A/A.) 
r(A) = n l (1. 11) 

i=l(l-A/lJ.i) 

and then obtains a partial fraction expansion of r(A), viz., 
<Q m. 

r(A) :::: Yo + 2) -'- . (1. 12) 
1 lJ.i - A 

Because of the interlacing of the eigenvalues (1. 10), Yo 
and m i are positive. The related function 

00 m. 
F(t) = L; _I cos~t, 

1 IJ.j 
(1. 13) 

which is a Hermitian-positive function, is then used to 
compute the largest value M(x) of r for which F(t) - r 
is Hermitian-positive over the interval (0, x), where 
o ~ x ~ 1. This particular step requires the solution of 
a Fredholm integral equation with kernel F(t - s). 
Finally, q(x) is obtained by means of a simple expression 
containing derivatives of the function M(2x). 

Partly because the proof of Krein's existence theorem 
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does not lend itself to computational purposes, and part
ly with an eye toward higher-dimensional inverse eigen
value problems to which Krein's method is not likely to 
be generalized, I decided to reexamine the actual con
struction of q(x) from the spectra {~n}~ and {/In}~' The 
results presented here are in many ways not completely 
satisfactory since they are local and apply only for 
small liq II. Thus, in Some sense, a constructive proof of 
the existence theorem which can be used for actual com
putations has yet to be found. In defense of the present 
analysis, I should say that the approach to be presented 
is based on an iteration technique which could perhaps 
be extended to more general q(x) as well as to higher
dimensional problems. 

In view of the limited scope of the actual results and 
for the sake of exposition, I decided to cast the analysis 
within the framework of the simplest inverse Sturm
Liouville problem, viz., for the canonical boundary con
ditions (1. 1)-(1. 8) or, as we shall see, for the so
called symmetric case. Most of these results can be 
generalized to other boundary conditions, but, as pre
viously mentioned, generalizations in other directions 
are undoubtedly more relevant. 

2. THE CANONICAL INVERSE STURM-LIOUVILLE 
PROBLEM 

We shall be concerned with the following Sturm
Liouville problem: 

y" + {u - q(x)}y = 0, X E (- 1, 1), 

y(± 1) = ° 
for symmetric "potentials" q(x), Le., 

q(- x) = q(x). 

(2.1) 

(2.2) 

Furthermore, we shall assume throughout our analysis 
that q(x) has been normalized so that 

J 1 q(x)dx ;; 0. (2.3) 
-1 

The spectrum {un}~ determines the symmetric poten
tial q(x) uniquely, and furthermore q(x) exists if the 
spectrum is such that 

lim (un lin21T2) = 1. (2.4) 
n"'OO 

Indeed, the above eigenvalue problem is "equivalent" 
to the following pair of Sturm- Liouville problems: 

u" + {~ - q(x)}u = 0, X E (0, 1), 

u(o) = u(I) = 0, 

and 

v" + {/l- q(x)}v = 0, X E (0, 1), 

v'(O) = v( 1) = 0, 

and it is quite easy to show that 

Y2n(x) = un(x), 

Y2n-1(x) = v,,(x), 
n = 1,2,···. 

(2.5) 

(2.6) 

(2.7) 

Therefore, the determination of q(x) from two spectra 
{An}~' {/In}~ which are interlaced, viz., 

(2.8) 

and which correspond to the eigenvalue problems (2. 5), 
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(2.6) is equivalent to the determination of the symmetric 
q(x) from a knowledge of the spectrum {u ,,}~ of (2. 1). 

Throughout part I (Sec. 3) of the paper, we shall con
centrate on the pair of eigenvalue problems (2.5), (2.6). 
However, in part II (Sec. 4) we shall adopt the point of 
view that q(x) is symmetric and deal with (2. 1). 

This changeover will serve to emphasize the separa
tion between part I and II of the paper: For instance, 
throughout part I, we shall assume thatq E Cl(O, 1) 
whereas in part II we shall relax this assumption and 
merely assume that q(x) E L 2(- 1, 1). Although none of 
the results of partiwill be used in part II, the motivation 
for the iteration technique presented in part II is to be 
found in part 1. 

3. PART I 

A. A single equation for u2 and v2 

Throughout this part, we shall focus our attention on 
eigenvalue problems (2.5) and (2.6) and assume that 
q E C1(0, 1). As a result, both u(x) and v(x) are in 
C3(0, 1). 

Let us introduce the following notation 

W = u2 • 

Then 

W' = 2uu', 

w" = 2u'2 + 2uu" 

= 2u'2 + 2(q - A)W. 

Multiplying (3.3) by 2w, we get 

2ww" = (2uu')2 + 4(q - ~)w2, 
Le., 

ww" - !w'2 - 2qw2 = - 2~w2. 

(3. 1) 

(3.2) 

(3.3) 

(3.4) 

Since no mention has been made of boundary conditions, 
it is clear that v2 also satisfies (3.4). Therefore, let us 
modify our original definition (3.1) and define w as a 
solution of the following nonlinear equation: 

ww" - -!w'2 - 2qw2 = - -}vw2 • (3.5) 

To complete the specification of w, let us require that 

w'(O) = w(l) = 0. (3.6) 

It is obvious from our construction that {u~, 4An } and 
{v~, 4/l n } are eigensolutions of (3.5) and (3.6). We shall 
presently show that (3.5) and (3.6) admit no other eigen
solutions. To that effect let us prove 

Lemma 1: The eigenfunctions w n (x) are nonnegative. 

Proof: If wn(x) is never zero in (0.1), then without 
loss of generality we can consider that wn(x) is non
negative and the lemma is proved. 

Let us therefore assume that 

Wn(X O) = 0, Xo E (0, 1). (3.7) 

From (3.5) we see that this implies that 

w~(xo) = O. (3.8) 

Thus, in the neighborhood of x 0' we can write 

(3.9) 
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where h(xo) ,.. 0. Substituting (3.9) in (3.5), we see that 

(2 + 0)(1 + Ii) - t(2 + 1i)2 = 0, (3.10) 

which implies that Ii = ° and hence that all zeros of 
w (x) are double zeros. As a result, without loss of 
generality we can consider that wn(x) ~ 0. 

We can now state 

Theorem 1: {w n , v"}r = {U~, 4A"}r u {V~, 4Il n}r. 

Proof: We have already seen that {u~, 4An }r and 
{v~, 4ll n }r are eigensolutions of (3. 5)-(3.6). Converse
ly, we shall show that any eigensolution of (3.5)-(3.6) 
belongs to {u~, 4A n }r U {v~, 41l,Jr. 

Since w is nonnegative and has double zeros, we can 
write 

(3. 11) 

where cp is in C2(0, 1). Substituting (3.11) in (3. 5), (3.6), 
we get 

cp3[ cp" + (!v- q(x)cp] = 0, 

cp(O)cp'(O) = cp(1) = 0. 
(3.12) 

Clearly, either cp = un(x) and vl4 = An or cp = vn(x) and 
vl4 = Il n • 

From the preceding discussion, we can write 

w2n (x) = u~(x), 

W2n - I(X) = v~(x), 
(3. 13) 

Thus (3.5)-(3.6) affords us a way of coupling the 
pair of eigenvalue problems (2. 5) and (2.6). That {u~} 
and {v~} enter in the solution of the inverse problem 
can be seen by means of the following heuristic argu
ment. If the potential q(x) were to be changed, say to 
q(x) + liq(x), then, to first order, the nth eigenvalue of 
(2. 5) would change by oAn where 

(3.14) 

NOW, the set {u~}r does not form a basis; this can easily 
be checked for the simple case q == 0. Therefore, we 
can find a non-zero oq which is orthogonal to all the 
{u~W. Thus, two different potentials would correspond 
to the same eigenvalues. Conversely, if {An} and {Il n } 

are necessary and sufficient to determine q(x) uniquely, 
then this mu~t imply that {u~}i together with {v~}i must 
constitute a basis for the functions q(x) and {An} U {Il n } 

must be related to {fcr qW,,(x)dx-}i. 

B. A linear equation for w 

In order to investigate the completeness of {wn(x}}i, 
it would be much preferable to deal with a linear equa
tion. Such an equation can be obtained by differentiating 
(3.5): 

w'" - 4qw' - 2q'w = - lIW ' • (3.15) 

It is at this stage that the differentiability of q(x) is used. 
We must now supplement the boundary conditions (3. 6) 
by an additional one. In view of (3. 7) and (3.8), it is 
clear that the new required boundary conditon should be 
w'(l} = 0, and so 

w'(O) = w(1) = w'(1) = 0. (3. 16) 
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It will be convenient to introduce the following three 
fundamental solutions WI(x,s},and W2(x,s},and W3(x,s}, 
where 

.cWj + s2W; :::: ° (j:::: 1,2,3), 

d 3 d , 
.£ :::: dx3 - 4q dx - 2q 

and 
WI (0, s) :::: 1, W~ (0, s) :::: 0, 

W 2 (0, s) :::: 0, W2(0, s} :::: 0, 

W3(1,s)::::0, W;(1,s)::::0, 

(3.17) 

(3.18) 

W~(O, s) :::: 0, 

W2(0,s):::: 1, (3.19) 

W;(1, s) :::: 1. 

All of the properties of Wj (X, s) which we shall require 
are derived by classical methods 9; we shall therefore 
simply state the various results which are needed. 

Uj(x, s) are entire junctions of s of order 1. That 
"'i (X, s) is an entire function of s can be seen by trans
forming (3. 17)-(3.19} into a Volterra equation, viz., 

Wj(x, s) ::::fj(x) + S fax. Kj(x, t)Uj(t, s)dt (3.20) 
J 

and making use of standard results in the theory of lin
ear Volterra equations. The statement regarding the 
order follows from an investigation of the asymptotic 
behavior of "'i (x, s) for I s I ~ 00. 

Lemma 2: As lsi ~ 00, 

WI(x, s) :::: 1 + 0 (elSilX IlsI3), 

W2(x,s):::: (1-cossx)ls2 + O(e'Si'XllsI3), (3.21) 

W3(x, s) :::: {1 - cos[s(x -O]}/s2 + 0 (elsil(l-x)/ls 13), 

Wi. (x, s) :::: 0 (elSilx II s 1 2 ), 

W2(x,s):::: sinsx + o (e'Si'Xllsl 2), 
s 

W;(x, s) :::: sins(x -1) + 0 (e 'si' (1-x)/1 s 12), 
s 

W~(x, s) :::: 0 (elSilx II s I), 

W2(x,s):::: cossx + O(e'Si'Xllsl), 

W;(x, s) :::: cos(x -1) + O(elsil(l-x)/1 s I), 

where Si:::: Ims. 

(3. 22) 

(3.23) 

Proof: The above formulas are deduced by first 
deriving the following integral equations for Wj , viz., 

WI :::: 1 + -.!. .e (4qWi. + 2q'WI )[1 - coss(x - ~)]d~, 
s2 0 (3.24) 

1 - cossx 1 rX 
W2 :::: + - ), (4qW2 + 2q'W2) 

s2 s2 0 
x [1 - coss(x - ~)]d~, (3.25) 

W3 :::: 1 - coss(x - 1) + -.!. r x(4 W' + 2 'W ) 
2 2'1 q 3 q 3 

S S 

x [1 - coss(x - O]d~, (3.26) 

and then by applying the same arguments as those 
used for the second order equations (e.g. Ref. 9, p. 9). 

We shall also need to introduce the Wronskian of 
WI' W 2 , W3 
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D(s) = (3.27) 

Since D(s) is not a function of x, we can evaluate D(s) by 
either setting x = 0 or x = 1 in (3. 27). As a result, we 
see that 

D(s) = - W;(O, s) = W 1 (1, s)W2(1, s) - W~ (1, s)W2 (l, s) 

and (3.28) 

D(s) = (sins)/s + O(e lSi III s 12). (3.29) 

If s = ..fin' ~ 3(x, v~/2) is an eigenfunction of the 
original eigenvalue problem and the Wronskian vanishes: 
Thus, the zeros of the Wronskian are {v~/2} ~. We shall 
write 

(3.30) 

Finally, the vanishing of the Wronskian for s = v~/2 
implies that W l' W 2' W 3 are linearly dependent, viz., 

W 3 (x, v~/2) = An W 1 (X, v~/2) + Bn W 2(x, v~/2). (3.31) 

C. The adjoint equation 

Since (3.15)-(3.16) is not a self-adjoint eigenvalue 
problem, we shall need to introduce its adjoint, namely, 

w"' - 4qw' - 2q'w = - vw', 

w(O) = ","(0) = ,,)(1) = O. 

(3.32) 

(3.33) 

We recall that the eigenvalues of (3.32) -( 3. 33) coincide 
with those of (3.15)-(3.16). It is a simple matter to 
deduce the following orthogonality relations: 

1 1 f Wn(x)w~(x)dx = f W~(x)wm(x)dx = 0 if n ;>' m. 
o 0 

Let us also introduce three functions (ll(x, s), 
(l2(X, s), and Q3(x' s) as follows: 

Qk(x'S) = EkZmWZ(x, s)W~(x, s), 

(3.34) 

(3.35) 

where EkZm is the standard isotropic Cartesian tensor 
of third order. Differentiating (3.35), we deduce that 

Q;:' = 4q Q~ + 2q'Qk - s2Qk' 

Thus 

J3Q k = - s2Qk' 

Furthermore, we should note that 

Q;(O, s) = 1, Q3(0, s) = 0, 

n3 (I,s) = W 1(I,s)W2(I,s) -W~(I,s)W2(I,s). 

(3.36) 

(3.37) 

(3.38) 

(3.38') 

(3.39) 

In view of (3.28), Q3(x' V!/2) is an eigenfunction of the 
adjoint problem and we shall write 

(3.40) 

Finally, for s = 11~/2, Q1' (l2' and (l3 are linearly de
pendent and by means of (3.31), we can show that 

J. Math. Phys., Vol. 15, No.4, April 1974 

Q1(X, 11;/2) = -Anwn(x), 

Q (x 111/2) = -B w (x) 2 ' n n n • 

D. The expansion theorem 

(3.41) 

We shall investigate the completeness of {w n (xl) ~ 
via the Cauchy integral method. Once again, the method 
is well known and we shall gloss over most of the 
details confining our presentation to the key steps. 

We focus our attention on the integral 

In = ~ § sQ(x, s)ds 
1ft en 

where en is a circle of radius r n such that 

11~/2 < rn < I1n+11/2, 

and the integrand Q(x, s) is defined as follows: 

(3.42) 

(3.43) 

(3.44) 

For our purposes it will be sufficient to assume that 
f (x) is a differentiable function and 

1 r f(x)dx = 0 (3.45) 
'0 

Since Q(x, s) is a meromorphic function of s, with 
simple poles at s = 11;j2 (m = 1,2, ... ), the computation 
of In can be carried out by means of the calculus of 
residues, viz., 

n 2111~ { x 
I,,(x) = ~ kl Q~(x, 11}/2) f fWW1(~' I1F2)d~ 

k~l D'(0, 2) 0 

+ Q2(X' I1F2) .(f(~)W2(~' I1F2)d~ 

- Q;(x, ~,/2) (fWW3(~' I1V2)d~} (3.46) 

or,in view of (3.31) and (3.41), 

1 
n f fWWk(~)d~ 

In(x) = - ~ 211~/2 0 w~(x). 
k~ 1 D'(I1V2) 

If we define J n (x) as follows 

In(x) = t f k cosk1fx, 
k~ 1 

where 
1 

f k = 2 f f(x) cosk1fxdx, 
o 

(3.47) 

(3.48) 

then we can prove (cf., e.g., Ref. 10, p. 303) that In - J" 
tends to zero as n --> 0';) uniformly on 0 ~ x ~ 1. Since f 
is continuous, we therefore conclude that 

1 
DO 211~/2 f fWwn(~)d~ 

f(x) = - ~ 0 1 w~(x). 
,,~1 D'( I1 i" 2) 

(3.49) 

The above series expansion can be written slightly 
differently. To that effect we start from the following 
relation: 
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(3.50) 

Using the boundary values for n 3(x, s) and w,,(x), we can 
see that 

1 1 i n 3(x,s)£w (x)dx + 1 w n (x)£n 3(x,s)dx =D(s), 
o "0 (3.51) 

or better still, 

-v r1
n 3(x, s)w~(x)dx - s2 i\AJ

II
(x)n;(x, s)dx = D(s). 

n . 0 0 (3.52) 

Therefore, 

r 1 , 
J
o 

w n(x)f1 3(x, s)dx = -D(s)/(s2 - vn)' (3.53) 

and, as s -> v!/2, we see that 
1 r 1,0 (x)w' (x)dx = -D'(1J1/ 2)/2v1/2 Jo n n n n· (3.54) 

As a result we can state 
1 

Theorem 2: If I (x) E C 1(0, 1) and 1 I(x)dx = 0, then 
o 

co 1 1 
I(x) = '0 (J IWwn(~)dU 1 w~Wwn(~)d~)w~(x). (3.55) 

nolO 0 

E. An iteration formula 

Let us multiply (2.5) and (2.6) by u,,(x) and vn(x) 
respectively, and integrate the resulting expressions 
from 0 to 1. We get 

1 1 1 
An 10 u~(x)dx = 10 u~2dx + Io q(x)u~(x)dx, 

1 1 1 
I-In i v~(x)dx = i v~2dx + i q(X)v2

n(x)dx. o 0 0 

(3.56) 

Using (3.13), we can combine these two expressions into 
a single one: 

1 1W'2(x) 1 
1/4vn I wn(x)dx = 1/41 n dx + 1 qw,,(x)dx. 

o 0 W,,(X) 0 (3.57) 

NOW, let us assume that a sequence of {ii II} ~ is given 
and that we want to find the potential q(x) associated 
with this double spectra. Let us also assume that the] 
sequence {il II} ~ is such as to guarantee that q(x) is 
differentiable. 

If q(O)(x) is an initial guess, then by solving an eigen
value problem like (3.15), (3.16) we can find the cor
responding eigensolutions {v ,,(0),1,0 n(O) (x)} ~. Then, we 
can use (3.58) to get a new, hopefully better, approxima
tion to q(x). This can be accomplished by defining q(1) (x) 
as follows: . 

1\(1) (x)w (0) (x)dx = 1J
4 

j) Cw(O)(X)dx _ 1/ [1 [w,,(O)' (x)]2 dx 
o"n·o n 4 . 0 (OV ) wn '\x 

or, alternatively, (3.58) 

1 1 r q(1)(x)w (O)(x)dx = 1. (v - v (0»1 1,0 (O)(x)dx 
'0 n 4 n non 

1 
+ i q(O) (x)wn(O) (x)dx. (3.58') 

o 

In view of the expansion theorem and the fact that q, q(O), 
q(l) have no mean, we can rewrite (3.58') as follows: 

1 
co 1 1,0 (O)Wd~ 

q(1)(x) = 1/4 2:; (v" ~ V,,(O») 1 0 " W (0) '(x) 
,,~1 1 w (O)Ww (O)'(~)d~ 11 

o n 11 

+q(O)(x). (3.59) 
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The cycle is completed when q(l) is substituted in 
(3.15) which can then be solved for {Ii ,,(l) , w,,(1)(x)}~. 

In summary, given two a~ropriate spectra {~,,}~, 
{P,,}~, Le., a sequence {il }Jo' we can construct a sequence 
of approximations {q(k)(x1} 1 as follows: 

0() 

q(k)(X) = q(k-1)(X) + % 6 (v
n 

- V,,(k-1» 
n= 1 

1 1 1,0 (k-l)(~)d~ 
X ____ ~O~_n ____________ __ 

1 r '1,0 (k-1)W (dw (k-1)/d~)d~ J O n n 

dw (k-1) (3.60) 
£ 1,0 (k-1) - _ 11 (k-1) --...::"'----

(k-1) n - n dx 

dw (k-1) I . I dw (k-1) I - 0 _n___ = W (k-1) = __ -'n=:--__ 
dx X"o n x=l dx x o 1 

where 
d3 d dq(k-1) 

£ ) = - - 4q(k-1) -- - 2 dx (k-1 dx 3 dx (3.61) 

In part II, we shall investigate the convergence of this 
iteration scheme, or rather of a comparable one. It 
should be apparent at this stage that the desired potential 
q(x) associated with {iln}~ is a fixed point of the operator 
which maps 'q(k-1)(x) into q(k)(x). 

4. PART II 

A. An iteration scheme for the symmetric potential 

To proceed with (3.60), we must be careful to add 
some conditions on the class of {il n}:;" , so as to guarantee 
that the desired q(x), if it exists, is differentiable. 

We can avoid this problem for the case of a sym
metric potential by dealing with the original Sturm
Liouville problem rather than the w equation. We can 
further simplify the iteration scheme by using a fixed 
set of eigenfunctions in the formula relating q(kT1) to 
q(k), for example, those eigenfunctions which correspond 
to the case q == O. 

As a result, let us consider the following iteration 
scheme: 

00 

q(k)(X) = q(k-1)(X) - 2 '0 (-1)n[6" - an(k-1)] COSn7TX, 
n° 1 

d 2y n(k-1) 
+ {an(k-1) - q(k-1)(x)}y P-1) = 0, (4.1) 

dx 2 

Note that if q(k-1 lex) is an even function, then so is 
q(k)(X). Furthermore, if q(k-1)(x) has no mean over 
(-1,1), so does q(k)(X). 

(4.1) could have been taken as the starting point of 
our analysis, but the discussion in part I might be helpful 
in clarifying the genesis of this iteration as well as in 
attempting future generalizations. 

In examining the convergence of the above iteration 
scheme, it will be useful to write the eigenvalues a" of 
(2.1) in a form reminiscent of their asymptotic expan
sionll : 

(4.2) 

where q" is the Fourier cosine coefficient of q(x), viz., 
1 

qn = I q(x) cosn7Txdx. 
-1 

(4.3) 
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The eigenvalue problem (2.1) itself can be written thus: 

n1T 2" (-I)n 
Y n(x) = sinr (x + 1) + n1T .t {q(~) + -2- qn 

- En[q]}YnW . sin n; (x - ~)d~ (4.4) 

with 
y n (l) =0. (4.5) 

Finally, given a spectrum {an} ~ satisfying (2.4), we 
shall define the operator (t, as follows: 

00 

(t,q == q - 2 6 (-I)n[a - a (q)] cosn1TX (4.6) 
1 n n 

where {an(q)};" are the eigenvalues of (2.1) associated 
with the given L 2 ( -1,1) symmetric, zero-mean function 
q(x). 

If an - n 21T2/4 is in [2' then (j,q is in L2 (-1,1) when
ever q is in L 2 ( -1,1). This follows from the fact that if 
(4.2) is looked upon as the asymptotic expansion of 
all' En is a(l/n) (cf., e.g., Ref. 1, p.l1) and qn is ob
viously [2. 

Thus Ci maps the complete metric space L 2 ( -1,1) 
onto itself and the sequence {q(k) (x)} would certainly 
be convergence if we were able to show that (j, is a 
contraction mapping, Le., if given two symmetric, zero
mean, L 2 ( -1,1) functions p(x) and q(x), there exists a 
number K < 1 such that 

IICip - Ciqll < Kllp - qll (4.7) 

where II II stands for the L 2 -norm. 

We shall see that provided that p and q are in a suf
fiCiently small ball around the origin, Ci is indeed a con
traction mapping. This will establish both the existence 
and uniqueness of q(x). However, in view of the restric
tion on norm of q, this result is not as general as that 
of Krein. 

B. Some inequalities 

In order to establish (4.7), we shall need to derive 
some inequalities. Let us first note that 

00 

(4.8) 

and so 

(4.9) 

Our goal should therefore be to get an upper bound for 

in terms of 

oq = lip - qll. 

Let us first establish 

Lemma 3: 

(1 Y (q)(x) sin n
2

1T (x + l)dx == Q n 
'-1 n 

is bounded away from zero. 

(4.10) 

(4.11) 

Proof: Let us multiply (4.4) by y,.<q)(x) and integrate 
over (-1,1). Then, with the normalization 

Ilyn(q) II = 1 

;ve get 
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(4.12) 

Le., 

1::s IQnl +:1T {IEn[q]1 +v'fllqll}. (4.14) 

On the other hand, if we evalute (4.4) for x = 1 and use 
the boundary condition (4.5), we see that 

(4.15) 

and hence 

(4.16) 

Combining (4.16) with (4.14) and solving the quadratic 
inequality, we see that 

I Qn I ~ t - if !lqll/n1T + [i - 3iI Ilqll/n1T 

+ (3/2n21T2)llqI12]1/2. (4.17) 

In an analogous way, we can show that 

J
+1 n1T 

P n = -1 Yn(p)(x) sinr(1 +x)dx 

is bounded away from zero, and we shall write 

I P n + Q n I ~ a- 1 > O. 

Lemma 4: 

where M is a numerical factor. 

(4.18) 

(4.19) 

(4.20) 

Proof: Let us return to the integral equations 
(4.4) corresponding to p and q. Setting x = 1 and sub
tracting them, we get 

i:1 {< -2
1

)n (Pn - qn) + (P - q)}{ Y n(P) + Y n(q)} 

· sin ~1T (1 - ~)d~ 

+ .C1 {(-21)n (Pn + qn) + (P + q)} {Yn(P) -Yn(q)} 

· sin n; (1 - ~)d~ 

+1 { } n1T - {En[p] - En[qJ} il Y n(P) + Y n(q) sinr (1 - ~)d~ 

- {En[p] + En[q J} i:1 {Y n(p) - Y ,.(q1 

• sinn; (1 - Od~ = O. (4.21) 

The first term in (4.21) will be written slightly dif
ferently in order to obtain the desired inequality. To that 
effect let us write 
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J
+1 j(-1)n(p _ ) + (p _ )l 

-1 t 2 n qn q) 

X {Y n{P) + Y n(q) - 2 sin n
2

1T (1 + ~)} sin n; (1 - ~)d~ 

= (1 {( -21)n (Pn - qn) + (p - q)}{y n{p) + Y n(q)} 

sin n; (1 - ~)d~ 

-1:1 
{( 21

)n (Pn - qn) + (p - q)} [cosn1T~ - cosn1T]d~, 
(4.22) 

Le., 

(1 {(-i)n (IPnl-qn)+ (p_q)} 

x {Y n{P) + Y n (q) - 2 sin n; (1 + ~)} sin n; (1 - ~)d~ 

= (1 {( -21)n (p n - q n) + (p - q)} {Y n{P) + Y n(q)} 

sin n; (1 - ~)d~. (4.23) 

Substituting (4.23) in (4.21), we get 

aOEn ~ I En[p] +En[q]I'oY n +v'Hyn{p) +yn(q) 

- 2 sin! n1T(1 + ~) II . oq + iI lip + q II . Cryn' (4.24) 

where 

Cryn = lIyn{p) -yn(q) II. (4.25) 

In view of (4.16) and (4.19) we can rewrite (4.24) 
thus: 

OEn ~,B{lIpll + Ilqll}oY n +yIlYn{P) +y n(q)-2 

sin!n1T(1 +moq, (4.26) 

where ,13 and'} are generic constants. 

We now need an upper bound for Cry n and for 

(4.27) 

We return to the integral equations (4.4) from which 
we can deduce that 

yn{P)(x) -yn(q)(x) 

=J..J
x 

j(-1)n(p _q) +(P-q)-E [P]+E [q]fl 
n1T - 1 t 2 n n n n 

X {Y n(P) + Y n(q)j sin ~1T (x - Od~ 

+J..J+
1

{(-21)n(p +q)+(P+q)-E[P]-E [q]} 
n1T -1 ~ n n n n 

(4.28) 

As a result 

,13 2 y{ } oYn ~ - oq + -OEn + - Ilqll + Ilpll OY n, n1T n1T n1T (4.29) 

where ,13 and yare two generic constants. 

J. Math. Phys., Vol. 15, No.4, April 1974 

Finally, by means of analogous calculations, we can 
deduce that 

OZn ~ ,B(lIpll + IIqll)/n1T. (4.30) 

Combining (4.26), (4.30), and (4.31), we get 

f3 yoq + 20E n 

OEn ~ n1T {lIpll + IIqll} . 1 _ (p/n1T){lIpll + IIqll} 

IIpll + IIqll 
+ e n1T . oq, (4.31) 

where again ,13, y, e, and p are numerical constants. 
Solving for OEn' we finally see that 

OEn ~ M . [(lIpll + IIqll)/n1T] oq 

where 
n1T + f3{lIpll + IIqll} (, (3) 

M = m;x n1T + y{llpll + IIqll} = max \1,y . 

(4.32) 

(4.33) 

Theorem: Given {6n}~ such that [~~(6n -
n 21T2 /4) 2]1/2 is sufficiently small, there exists a unique 
flex) = q( -x) such that 

Y ~ + {&n - q(x)}Yn = 0, 

y n (±1) = O. 

Proof: Let us define R thus: 

R = [~ (Un _n~1T2) 2J 1/2 

and consider the ball B R where 

B R = v (x) I IIfll ~R}. 

(4.34) 

(4. 35) 

(4.36) 

Then, if P and q are in B R' (4.9) and (4.33) implies 
that 

(4.37) 

Thus, if R is chosen such that 

R = v'6/4M, (4.38) 

then the mapping of the ball B R is contractive. 

By picking any even q{O)(x) E B RJ we can generate a 
Picard sequence {q(k)(X)} ~ by means of the iteration 

This sequence will necessarily converge toward a 
unique even function, say fi(x) , which lies in B R' i.e., 

llfill ~R =v'6/4111. 

(4.39) 

(4.40) 

Cleart'R and R must be related; hence M must deter
mine R. To see this, let us apply (4.33) to the functions 
fi(x) and 0: 

an - in21T2 -! (-1)n fin ~ M . (R2/n1T) = 3/8n1TM. 

As a result 
(4.41) 

and so 



                                                                                                                                    

436 Victor Barcilon: Iterative solution of the inverse Sturm-Liouville problem 436 

3 (~12 ;; n12 ) 1/2(", 1 qAn 12) 1/2 R 2 :5: t L; 1 q n 1 2 + 8M ,,0 L.J 

+ _3 _. (4.42) 
128M2 

Making use of Parseval's theorem, we deduce that 

R :5: 3v'6/16M. (4.43) 

This upper bound for R is very conservative, and the 
iteration scheme is probably convergent for larger 
values of R. Perhaps the single most important cause 
for this restriction on the existence proof lies in the 
bounds for the eigenvalues. Indeed, (4.2) together with 
the bound on E" [q] show that we are essentially using 
the form of the asymptotic estimates of the larger 
eigenvalues for the entire spectrum; this is valid pro
vided that q(x) is in a sufficiently small ball around the 
origin. 
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It is shown how the methods of Hadamard, developed for the Cauchy problem in free space, can be 
extended to include the presence of simple obstacles. The modifications necessary are illustrated by 
treating the problem of diffraction by a conducting half-plane in two and three dimensions. 

1. INTRODUCTION 

The problem of diffraction by a planar edge has been 
studied almost continuously since Sommerfeld! first ob
tained the solution for the problem of plane waves strik
ing a half-plane in 1896. The number of people who have 
worked on and solved in countless ways the various ver
sions of the problem of diffraction is much too large to 
be recounted here, although some idea may be obtained 
by consulting the review article by Bouwkamp2 or the 
recent book of Jones. 3 It is all the more surprising then 
to learn that the complete solution to the half-plane diff
raction problem in two dimensions can be expressed in 
extremely simple form, as was discovered by Fried
lander4 in 1951. The corresponding simple solution for 
the three dimensional case was subsequently given by 
Wait5 in 1957. 

The method employed by Friedlander was a modifica
tion of that developed by Hadamard6 for Cauchy's prob
lem in free space. Namely, the use of "the fundamental 
formula," as Hadamard calls it, for second order partial 
differential equations (also known as Green's, Gauss' ,or 
Stoke's theorem), together with some "elementary solu
tion" of the homogeneous differential equation. We follow 
the same general procedure but add some additional 
modifications to those of Friedlander in order to be able 
to deal with problems in more than two space dimensions. 

The particular case of a half-plane in three dimensions 
is treated in detail, arriving at the solution obtained by 
Wait5 by an entirely different method. The reason for 
going to the trouble of solving the half-plane problem 
once again is that the method employed here is consider
ably more general than that of Ref. 5. In particular, it 
can be used even in the case of a curved edge, which is 
done very briefly in Sec. 7. 

What is new in this paper in the two- dimensional case 
is the method of determining the "elementary solutions" 
v * (the end of Sec. 4) and again w [near the end of Sec. 5, 
around Eqs. (19)-(26)]. While v* is already known in the 
case of reflection from a plane, it would not be known in 
the case of reflection from a curved surface but could 
still be found by exactly the same method (even the same 
formula) described in this paper. In the three-dimen
sional case, Friedlander's treatment does not apply as it 
stands. Considerable nontrivial changes must be made 
to the method employed in Ref. 4 in order to carry 
through the general idea, and this is done in detail in 
Sec. 6. 

Diffraction by a curved edge was treated in Ref. 7 but 
that treatment was not wholly satisfactory. The one un
satisfactory feature was the method employed (construct
ing an infinite sequence of functions) for obtaining the 
elementary solution w for the diffraction region. But the 
treatment in this present paper (the end of Sec. 6) cul
minating in Eq. (56), gives an alternative formula for w 
which does not require infinite series at all. With this 
one change in the treatment in Ref. 7, the diffraction 
problem for a curved edge is complete. The curved edge 
diffraction problem has not been solved before. 
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For simplicity of presentation of the main ideas we 
restrict our attention to only two and three dimensions 
and to the case of zero initial conditions; but it will be 
obvious that the same procedure works in spaces of 
higher dimenSions, and even for more general hyperbolic 
differential equations, as well as for different initial or 
boundary conditions. 

Sections 2 and 3 are devoted to a statement of the 
problem and of the fundamental formula. In Sec. 4 we 
review the method of solving the free space and half
space problems in two dimensions as introduction to the 
solution of the half-plane problem in Sec. 5, which is 
essentially the same as that of Friedlander.4 Sections 
5 and 6 extend the method to the three- dimensional half
plane problem, while Sec. 7 completes the solution of the 
problem of diffraction by a curved edge previously 
treated in Ref. 7. 

2. STATEMENT OF THE PROBLEM 

The problem is to find the function u(t,p), P a point 
in 2- space (or 3- space), which satisfies the inhomogen
eous wave equation 

1\1 2 _E) u(t,p) =j(t,p), 
\ at2 

and the boundary condition 

u(t,P) = Uo(t,P) on the plane, 

as well as the zero initial conditions 

) au 
u(O,P = ° = - (O,P), 

at 

(1) 

(2) 

(3) 

and, finally, the usual "edge condition," that u(t,P) goes 
to zero as the square root of the distance from the edge. 
(See Ref. 8.) Although it will not be explicitly referred 
to again, it is also assumed that j and U 0 are continuous 
and "compatible": 

j(O,P) = Uo(O,P) on the plane. 

And when we say that u satisfies (1), we mean that u has 
continuous first and second partial derivatives every
where except possibly on the plane itself (and on wave
fronts), and the second partials satisfy (1). 

3. THE FUNDAMENTAL FORMULA 

Our main tool-practically our only tool-for obtaining 
the solution u(t,p) of (1) is the fundamental formula (FF) 
for the wave operator applied to u and some solution v 
of the homogeneous wave equation 

(\1 2 
- a~:) v = 0, (4) 

over an arbitrary region :D; namely 

J Iv du - u dV)dS + 1 jvdV= 0, 
a:l) \ dv dv :D 

(FF) 
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where du/dll = 10{iJu/at) - 11 (au/ax1) - 12(au/ax2) -
13(au/ax3), 10, 11,12,13 are the direction cosines of the in
ward normal to the surface a:D, the "transversal deriva
tive." The transversal derivative obviously reduces to 
the outward normal derivative on a time independent 
surface. 

This formula (FF), which is obtained in the usual way6 
by multiplying (1) by v, (4) by u, subtracting, integrating 
over :D, and applying Stoke's theorem, of course assumes 
that the functions u and v involved are nice enough in :D 
and on the boundary a:D. But since we shall often want to 
use it for functions v and regions :D such that v is singu
lar on a:D, it will be understood that all surface and 
volume integrals ariSing are interpreted in the sense of 
limits of corresponding integrals over approximating 
interior regions. This is a common practice which need 
not give rise to any ambiguities so long as all the limits 
are taken in some consistent fashion. 

4. HALF-SPACE PROBLEM IN TWO DIMENSIONS 

Let vet - t', I pp'l) denote the so-called "elementary 
solution" of (4): 

v(t- [I, IpP'I) = r-1!2(t- t', I PP'I), (5) 

where 

r(t - t', I Pp'l) = (t - [')2 - I pp112, (6) 

and I pp'l is the distance between two points P,P' in 2-
space. 

Recall that this elementary solution venables one to 
solve the initial value problem for (1) in the absence of 
any plane by the simple procedure of merely applying 
(FF) to u, the desired solution, and v over the region :D j 

bounded by the retrograde light cone. More explicitly, 
let (t,p) be fixed and apply (FF) to the functions u(t',P'), 
vet - t', I PP' I) over the region 

:D. = {(t',P'): 0 < [' < t- IPP'I}. 
I 

It turns out, though we will not go through the elementary 
but slightly tedious details here, that, because of the inti
mate relation between v and the surface r = 0 (more 
preCisely, the surface t' = t - PP' ), only that portion of 
the surface near the vertex (t, P) yields a nonzero contri
bution. This contribution is just 21T times the value of 
u(t', P') at the vertex (t, P). On the remainder of the 
boundary of :D; ,which is to say where t' = 0, u and 
du/dll each are zero because of the initial conditions (3). 
Thus (FF) reduces to simply 

21TU(t,P) + J f(t',P,v(t- t', Ipp'l)dV'=O, (7) 
:Di 

which obviously gives the solution u for the free space 
problem. 

In the present case this solution (7) is valid only for 
such (t,P) that the cone r = 0 does not meet the plane. 
For larger t there will be reflection from the plane. 

One way of obtaining the solution in this case is the 
well-known method of "images" wherein one notices that 
the function 

v*(t - t', I PP' I) = v(t - t', Ip * p'I), 

where p* denotes the image of P in the plane, is a 
suitable elementary solution of the homogeneous wave 
equation (4) corresponding to the region :D .. ' 

:D ={(t',P'):O<t'<t-lp*p'l}. 
r 
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In this case, one first applies (FF) to u(t',p' ) and 
vet - t', Ipp' I) over the region :D i (it being understood 
that both :Di and :DT are limited to those points P' on the 
same side of the plane as P), giving 

-21TU(t,P) = 1 fvdV' + J Iv du - u dV) dS', (8) 
:Di Pi \' dll' dll' 

where Pi denotes the portion of a:D; consisting of the 
plane, since the only portions of a:D; contributing nonzero 
surface integrals are Pi and the neighborhood of the ver
tex of r = O. Second, apply (FF) to u(t', PI) and v*(t - t', 
I ppl I) over the region :D T' This time the surface inte
gral over the curved portion of a:Dr(a portion of the 
cone t' = t - I P * p'l) gives nothing, since the neighbor
hood of its vertex (t, p*) is not involved. Hence we get 

0=1. fv*dV' + J Iv* du - u dV*)dS" (9) 
:Dr Pr \' dll' dll' 

Since obviously 

v*(t - t', I PP' I) = v(t - t', I PP' I), (10) 

dv* (t- t', I PP'I) =_dv* (t- t', Ipp'I), 
dil' dll' 

(11) 

when P' is on the plane p, subtracting (9) from (8) gives 

- 21TU(t,P) = 1. fvdv'-l fv*dV' - 2 J u dv dS' 
:I); :Dr Pi dll' (12) 

(where we have used the fact that P
T 

is the same as Pi)' 
Now substituting U 0 for u in the integral in (12) gives 
the solution u for the half- space problem. 

But suppose for the moment that we did not happen to 
know the "Suitable" v* for the above argument, and had 
to try to find it. The properties v* must possess to 
qualify it as "the continuation of v corresponding to the 
region :D;' are exactly those which we have used above. 
Namely, v* should be a solution of (4) which satisfies 
(10) and (11), and which gives zero surface integral 
over the curved portion of a:DT for arbitrary u. 

To obtain v*(t, P; T, Q) from these properties we 
apply (FF) to v*([', P'; T, Q) and vet - t', I PP' I) over 
the region bounded by the backward light cone from 
(i,P) and the forward cone from (T, Q) (with T < t), to
gether with the plane p. Since (FF) has f = 0 in this 
case we get 

- 21TV*(t,P; T, Q) 

= J iv(t - t', Ipp'l) dv* (t' ,P'; T, Q) - v* dV)dS~ 
P \ dv' dll' 

since the integrals over the two curved surfaces vanish 
(except for the part near the vertex) on account of the 
properties of v* on the one and v on the other. This can 
be rewritten, using (10) and (11), as just 

-21TV*(t,P;T,Q) =- J Iv(t- t', IPP'I)~ (t'- T,lp'QI) 
P \ dll' 

+ v(t'- T, Ip'QI) dv (t- f', IPP'I~ dS', (13) 
dll' J 

which expresses our supposed unknown v* in terms of 
the known v. Here the surface integration is understood 
to be over those (t' ,PI) on P which are contained be
tween:D; and :D .. , of course. 

5. HALF-PLANE PROBLEM 

In many respects one can treat the diffraction problem 
in much the same way as the reflection problem was just 
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treated. There is one important difference, however, 
which really must be cleared up first. That is, that al
though the solution v* corresponding to the reflection 
wavefront t'-== t + I P * P' I has the property that the in
tegral 

J fv*(t p. t' P') du (t' P') - u dV*)dS' 
\ ", dv" dv' 

over any portion of the wavefront vanishes, for arbitrary 
u, just as the corresponding integral with v in place of 
v'" vanishes over any portion of the direct wavefront 
t' == t - Ipp'l which does not include a neighborhood of 
the vertex (t, p), the corresponding integral with the 
solution of (4) corresponding to diffraction must vanish 
over any portion of the diffraction wavefront which does 
not include a neighborhood of the common generator. 
That is, the generator which the direct and diffraction 
wavefronts have in common (or the reflection and diff
raction wavefronts have in common, as the case may be). 
Keeping this difference in mind, we can proceed much as 
before. 

Let q denote the" shadow plane" corresponding to the 
fixed point (t,P). This is the half-plane determined by 
(t,P) and the edge of the half-plane separating the region 
:OJ from which direct radiation can be received at (t,p) 
and the region from which only diffracted radiation can 
be received. Let:Or again denote the region from which 
reflected radiation can be received, and let :Oa denote 
the region from which diffracted radiation can be re
ceived. 

First apply (FF) to the unknown solution u(t' , P') and 
v(t - t', Ipp' I) over :0; 

- 21TU(t,P) == f jvdV' 
:0; 

+ f + (V(t_t',IPP'l
dU 

(t',P')-u dV)dS', (14) 
Pi q; dv' dv' 

where q;, of course, denotes the portion of the boundary 
:0; formed by q. [Notice that on q, duldv' == (l/r') aulae', 
so that dul d v' is not integrable on q unless u goes to 
zero with r' , the distance from the edge.] 

Next, let w(t, P; t', P') denote the "solution" of (4), 
assumed to be unknown for the moment, which is the 
continuation of v into :0 a' By "continuation" we mean to 
imply that v in :OJ and w in :Oa combine to give a solution 
of (4) which is appropriate to the total region. This 
means, among other things, that the total function is con
tinuous and has continuous first partials everywhere, ex
cept possibly on p. It follows that wand its normal 
derivative must have jump discontinuities on q which 
exactly match those of v in:O j [which is why the quota
tion marks when referring to w as a "solution" of (4)]. 

Thus if [w] denotes the jump in w in crossing q from 
the side on which (t,P) lies to the other side, then we 
must have 

[w] == v and [d~l == 0 on q 
dv~ 

[dvldv' == 0 on q, since (dldll') Ipp' 1== 0 there]. 

(15) 

Next,apply (FF) to u(/',P') andw(t,P;t',P') over the 
region :D~, which is the portion of :Oa on the same side of 
q as (t, P), and over the region :D d , which is the remain
ing portion of :Od: 

0== J jwdV' 
:0 a 

+ f (w(t p. t' P') du (t' P') - u dW)dS' 
p~+q';+g+\ ' " dv" dll' '(16) 

J. Math. Phys., Vol. 15, No.4, April 1974 

0== 1 jwdV' 
:0-

d 

439 

+ f_ (w(t,P;t',P') du (t',P')-u dW)dS', 
P d+ q{j+g- \: dv' dv' (17) 

where we have used subscripts +,- to denote the side of 
p or q on which (t, P) lies, and the opposite Side, respec
tively. The notation g+ or g- is intended as shorthand for 
the contribution from the surface integral over the diff
raction wavefront in the neighborhood of the common 
generator, which is the line of intersection of the wave
front and the shadow plane. 

Adding (16) and (17),and using (15) and the observation 
that dldv' has opposite directions on q+ and q- ,gives 

o == J jwdV' + f v(t - t' I PP' I) du (t' P')dS' 
:0 d q.; , dv" 

+ f (w(t p. t' P') du (t' P') - u dW)dS', 
Pd+Pd+g++g- ", dv" dv' (18) 

Adding (18) to (14) now gives (since q a == q;) 

- 21TU(t,P) == f jvdV' + f fwd V' 
:0 ; :i) a 

+ l(v(t-t',IPP'I) du (t"P'}-U~)dS' 
<Pi\. dv' dll' 

'+ f fw(t p. t' P') du (t' p') - u dW)dS', 
Pd+Pfi+g++g- \' , , , -dv" dv' (19) 

Before proceeding further along these lines with the 
reflection function v ... , etc., we may as well pause long 
enough to determine the function w(t,Pj t' ,P'), since the 
phenomenon of diffraction is a direct consequence of the 
presence of an edge, having nothing to do with reflection. 
That is to say, the function w is determined independently 
of where the half-plane is oriented about the edg~at 
least until such time as the half-plane is reached. It 
follows that the contributions in (19) indicated by g+ and 
g- must cancel each other, for arbitrary u satisfying the 
edge condition. 

To keep clear as to whether it is the function w on the 
same side of q and p as (t, P), or the other side, let us 
denote the two functions, temporarily, by w., w_, respec
tively. First apply (FF) to w+(T, Q; t' ,P') and v(t - t', 
Ipp' I) over the region bounded by the backward cone 
from (t, P) and the forward diffraction cone correspond
ing to (T, Q), which is assumed to contain (t,P), of course. 
There being no half-plane present, we get 

- 21TW+(T, Q; t,P) 

== 2 f (v(t- t',lpP'I) dw+ (T,Q;t',P')-w+ dV)dS', 
G d~ d~ 

(20) 
where G denotes that there is a contribution to the sur
face integral over the diffraction wavefront from the 
neighborhood of the generator in the shadow plane cor
responding to (T, Q). The factor of 2 is to account for 
the contribution from the surface on each side of this 
generator. 

Next apply (FF) to the same two functions over the 
region bounded by the backward diffraction cone corres
ponding to (t, P) and the forward diffraction cone corres
ponding to (T, Q): 

0==2 fG (v(t- t', I pp'l) dw+ (T,Q;t',P') - w+ dV)dSI 
\; dv ' dil' 

+ 2 J (v(t- t', I PP' I) dw+ (T Q' t' PI) - w dV)dS' 
g \ dil' ", + dll' , 

(21) 
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where g refers to the point (t, P). Combining (20) and 
(21) gives 

- 21TW.(T, Q; t,P) 

=- 2 f v(t-t'lpp'I)-+ (T Q·t' P')-w. - dS'. ~ dw dV) 
g , dil'" , dll' (22) 

Likewise 

- 21TW_(T,Q;t,P) 

= - 2 f (v(t - t', I PP' I) dw_ (T, Q; t',P') _ w_ dv )dS', 
g \ dll' dll' 

(23) 
But the right-hand sides of (22) and (23) must be the 

negatives of one another, according to the remarks fol
lowing (19). In other words, w_ = - w •• Taken together 
with (15) this implies that 

w.=- iv=-w_ onq. 

Hence, finally, from (22), 

- 21TW+(T,Q;t,P) 

(24) 

= 1 (v(t- t' Ipp'l) dv (t'- T I QP'I) - v dV)dS', 
g \ ' d II" d II' 

(25) 
We can now return to Eq. (19), which simplifies slightly 

to 

- 21TU(t,P) = f fvdV' + J~ fwdV' + J + 
:OJ d Pj-Pd 

x iv(t - t' I PP' I) du (t' p') - u dV) dS' (26) 
\ ' d~' d~' 

where by Pi - P~ we mean to indicate that the result of 
integrating over p~ is to be subtracted from the integra
tion over Pi' 

Now apply (FF) to u, v* over region !O .. , and to u, w * 
(where w* is the appropriate continuation of v* into !Od' 
just as w is the continuation of v) over !Od' and add the 
results to give 

0= J fV*dV' + 1 jw*dV' 
~.. :Od 

+ J (v*(t - t', Ipp' I) du (t',p') - u dv~ dS'. (27) 
P;-Pa dll' dll') 

Finally, subtracting (27) from (26) and using the fact 
that u = Uo on p, we have 

- 2rru(t,P) = f jvdV' - f jV*dV' 
:OJ :Or 

+ J j(w - w*)dV' - 2 J + Uo dv dS'. (28) 
:Od Pj-Pd dll' 

6. HALF-PLANE DIFFRACTION IN THREE 
DIMENSIONS 

The method of obtaining the solution to the half-plane 
problem in three dimensions (or any number of dimen
sions, for that matter) will be seen to be very much like 
that just used in the preceding section for two dimen
Sions, at least in broad outline. There are, however, 
some rather important differences, due to the fact that 
the "elementary solution" is now not an ordinary func
tion,as in the two-dimensional case, but is really a 
generalized function_ This fact gives rise to some tech
nical difficulties not present in the previous case, but 
does not change the problem in any essential way. 
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Recall that the elementary solution for the wave equa
tion in free space (in three space dimensions) is 

v==li(t- t'2-R2), 

R = Ipp'l, 
(29) 

where li is the Dirac delta function (generalized function), 
or, equivalently, 

v == i R-1li(t - t' - R). (30) 

Just as R denotes the shortest distance between two 
pOints P and P' in free space, the problem of diffraction 
by an edge involves the shortest distance between the 
two pOints via the edge. Let this minimal distance be 
denoted by A. Thus if (r, 8, z) denote the cylindrical co
ordinates of P, relative to the edge, and (r', 8', z') the 
coordinates of P' , then 

A2 = (r + r')2 + (z' - z)2. (31) 

According to the solution for the half-plane problem 
given by Wait,5 the elementary solution corresponding 
to the diffraction region is w defined by 

w == - (1/1T)' [(A2 - R2)1/2/(t - t'2-R2)(t - t'2- A2)1/2]. 
(32) 

By letting !OJ' :Dr,:Dd be defined as before, the half
plane problem solution is then (zero initial and boundary 
conditions) 

- 2rru = f. jvdV - J fV*dV + J j(w - w*)dV. 
:D; :0 l' :0 d (33) 

But suppose we did not happen to have this solution 
and wanted to find it. Naturally our first step would be 
to apply (FF) to u and v over the region :Dj' except for 
the difficulty in interpreting the surface integral 

v --u- dS, 1 ~ du dV) 
iI:O i dll dll 

(34) 

wherein v is not an ordinary function but a generalized 
function, whose support is precisely the surface a:D;. 

One way of meeting this particular difficulty is that 
of Hadamard 6 Namely, change the problem from one in 
three dimensions to four by adding a dummy fourth 
variable (his "ascent"), interpret the resulting surface 
integral in the sense of his "finite part" integrals, and 
then integrate out the dummy fourth variable (his 
"descent"). 

We shall not employ Hadamard's method in the pre
sent circumstance, however, because of the serious dif
ficulties which would arise when we come to the diffrac
tion region. [Without going into details, the difficulty we 
have in mind is due to the fact that w, given by (32) has 
some of the character of an elementary solution in two 
dimensions-as appears from the factor (t - t'2 - A2)-1/2 
-as well as some of the character of three dimensions
as appears from the factor (r:::7'2 - R2)-1.] 

Another way of interpreting surface integrals such as 
(34}--and this is the method we shall employ-is that 
described in Ref. 9 and which we shall refer to as "In 
E-part" from here on. Briefly the idea is this: 

Take as elementary solution for free space in three 
dimensions not the generalized function v given by (30), 
but the ordinary function 

(35) 
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(This is an elementary solution, as is readily verified.) 
Of course, the surface integrals such as (34) with this v 
will not make sense in the usual way, being infinite. But 
we can apply the fundamental formula (FF) to u and v 
over some approximating region ~j(E), depending upon a 
parameter E > 0, determine the asymptotic behavior of 
all the resulting integrals as E J, 0, and retain only those 
terms of order InE. Not only will the equation resulting 
from this procedure be true, but, as explained in Ref. 9, 
it will have precisely the properties needed to enable 
one to solve the Cauchy problem for the wave equation. 
To Signify that only the InE part of an integral is to be 
retained we shall attach a superscript L to the integral 
sign. 

First apply (FF) to u(t', P'), v(t - t', I PP' I) given by 
(35), over the region ~j: 

J L f v + f L Iv du - u dV) == O. (36) 
:OJ a:O j \ dll' dll' 

The volume integral is easiest, since it can be written 

JL f(t',P')[(t- t')2-R2]-ldt'dV(P') 

::=: fL f f(t-R- E,P')[(t- t')2-R2]-ldt'dV(P') 

+ fL J[f(t~ p')- f(t-R - E,P')][ t-t'2-R2]-ldt'dV(P'). 
(37) 

But the first integral, being equal to 

JL f(t - R _ E,P')' -.!.. fIn t - t: - RJt'~t-R-< dV(P'), 
2R [ t - t + RJ t'~O 

obviously has InE part equal to 

J f (t - R P')· -.!.. dV(P')' 
O<R<t '2R ' 

(38) 

and the second integral in (37) converges to a finite limit 
as E J, 0, hence has InE part equal to zero. In other words 
the first integral in (36) is just (38), which is an ordinary 
integral. [InCidentally, (38) is, of course, the same as 
would be obtained by integrating fV over !l); with v given 
by (30).] Of course the integration region in (38) is 
bounded still by the "shadow plane," though we have not 
explicitly indicated this fact. 

As for the surface integral in (36), nothing is obtained 
from the plane t' == 0 since u and au/at both vanish there. 
So there remains only the curved surface t' = t - R - E, 
say, the half-plane p, and the shadow plane q, which in 
cylindrical coordinates about the edge has equation 
e' == e + 71. Without going through the details here, since 
they are not difficult in any case, one finds that the only 
portion of the cone which contributes anything to the InE 
part is the neighborhood of the vertex; and the contribu
tiOn" here is just 271 times the value of u at the vertex 
(t, P). Thus (36) can be rewritten 

- 27fu(t,P) == f:o f(t - R,P') -.!.. dV(P') 

i 2R L ~ du dV) +f v--u-
q+p dll' dll' , 

where !Di denotes the region 0 < R < t, bounded by the 
shadow plane, and where q,p denote the shadow plane 
and half-plane, respectively. 

But on q, d/dll' == (1/r') alae' (in cylindrical coordi
nates), and clearly av/ae' == 0 since aR/ae' == 0 on q. And 

f L 1 au --
[t - t'2 - R2]-ldt'dr'dz' 

q r' ae' 
= f .l au (t - R,p,)·l dr'dz'. (39) 

q r' ae' 28 
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As for p, the term v du/dll' gives a contribution exactly 
as in (38), but the term u dv/dll' gives (in cylindrical co
ordinates r', e', z') 

.r L 
U' 2r sine·[t- t'2-R2]-2dt'dr'dz' 

== J 2r sine .(_1_ ~ (t - R,P') + _1_ u(t - R,P')\ 
P 4R2 at' 8R3 ') 

x dr'dz'. (40) 

Thus, finally, (36) can be written in terms of standard 
symbols in analysis as 

- 2rru(t,P) 

== f f(t - R P,)· ~ dV(P') + f ~ au (t - R P')dr'dz' 
:OJ '2R q r' ae' , 

- f [~ ~ (t-R P) - 2r sine (~ ~ (t- R,P') 
P r' ae" \482 at' 

+_1_u(t_R,p,~1 dr'dz'. (41) 
8R3 'lJ 

But let us return now to the much simpler (though less 
explicit) notation of InE part, so that (41) is condensed to 
just 

J1. fL ~ du dv\ - 2rru = f v + v - - u - ) 
:D j Pj+qj dll' dll' 

(42) 

with P ., q. denoting those portions of p, q which constitute , , * ( the boundaries of !Dj . Applying (FF) to u and v the 
image of v in the plane p) over !Dr gives similarly 

0= fV + v - - u - , f L * JL ~ * du dV*) 
:Or pr+q: dll' dll' 

(43) 

there being zero contribution from the surface of the 
cone t' = t - R *, just as in the two- dimensional case, 
since the integration does not include the neighborhood 
of the vertex. 

Next, apply (FF) to u, W [defined by (32)] over the diff
raction region !D~, the "positive" portion of !D d' 

0= + w+ + + +w--u-J f ~ du dW) 
:Dd f cd+Pd"'qd dll' dll' 

(44) 

and to the other portion !D~ 

o = _ fW + _ _ _ W - - u - . J J ~ du dW) 
:Dd cd"'Pd+qd dll' dll' 

(45) 

(The integrals here are ordinary ones.) 

Since W is the elementary solution of the homogeneous 
wave equation which is "appropriate" for the diffraction 
region !D d , and u satisfies the edge condition, the only 
portion of the surface Cd contributing a nonzero amount 
is the neighborhood of the line of intersection of Cd and 
q (the generator common to Cd and C j)' And since 
W = 0 on q, and dw/dll' has opposite sign on q+ and q-, 
adding (44) and (45) gives 

o = fW + + _ "' W - - u - . J J ~ du dW) 
:Dd Pd+ Pd+ 2c d dll' dll' 

(46) 

Of course, it turns out that the contribution from cd is 
exactly half the amount obtained in (42) from q:, but 
opposite in sign, so that these two cancel each other 
when (42) and (46) are added. Thus 

- 27fu = J" f v + fW + v - - u -rL J J L ~ du dV) 
:Di :D d Pj dll' dll' 

+ J (w du - u dW) (47) 
P'd+P"d \ dll' dll' . 



                                                                                                                                    

442 Paul B. Bailey: On the problem of diffraction 

Similarly the image functions w *, v* combine to give 
the result 

0= fL Jv* + f 
:r; r :0 d 

Jw* + f L Iv* du _ u dV*) 
Pr \ dv' dv' 

+f+ _lw*dU_udW*). 
Pd+Pd \ dv' dv' 

(48) 

Subtracting (48) and (47), finally, gives the solution to our 
problem 

- 27TU = jL Jv - 1L Jv* + 1 J(w - w*) - 2 fl U dv 
:f'Ji !Dr!Dd Pi dV' 

(49) 
since v = V*, W = w*,dv/dv' = - dv*/dv' on P, and u is 
given on p. 

But suppose we did not already have the function w 
and were faced with the problem of finding it. The 
properties w must have, in addition to being a solution 
of the homogeneous wave equation, are just those already 
cited. Namely, w = 0 on q, dw/dv' has opposite sign on 
q+ and q- ,and, for arbitrary functions u which satisfy the 
edge condition and zero initial conditions, 

f L Iv du _ u dV) + f Iw du _ u dW) = O. (50) 
qt " dv' dv' Cd \ dv' dv' 

To determine w from these properties, apply (FF) to 
W(tf - T, P' , Q), v(t - t', I PP' I) over the region bounded 
by the backward cone from (t,P), the forward diffraction 
"cone" (not really a cone) t' = T + A(P', Q) correspond
ing to (T, Q), the region being supposed cut along the 
shadow plane corresponding to (T, Q). Since the orienta
tion of the half-plane is unimportant, as commented on 
before, we assume the half-plane coincides with the 
"cut" q(T, Q), for convenience. And since both v and w 
have singularities, to avoid any possible confusion as to 
the meaning of InE part integrals we shall explicitly 
specify the approximating surfaces as 

c(E1): t' = t - E1 - R(P,P'), 

c d(E 2): tf = T + E2 + A(P', Q). 

(51) 

(52) 

With these preliminaries taken care of, we apply (FF) 
cmd take the InE1 part, E2 for the moment being fixed. 
The only nonzero contribution from c is just 21T times 
the value of w at the vertex, and there is no contribution 
at all from q, since the integrals on the two sides of q 
cancel each other. Hence all we get is 

- 27TW(t- T,P,Q) = 1 V --w- , f L ~ dw dV) 
Cd\(2) dv' dv' 

(53) 

the integration region being of course bounded by C(E1). 

It is tempting to try to replace the integral in (53) in
volving our supposed unknown function w by the shadow 
plane integral in (50) involving another v in place of w; 
but unfortunately (50) is not known to hold except when 
the function u appearing there satisfies the edge condi
tion. In fact it turns out that (50) is not true for other u. 

However, there is another identity, namely 

f L ( du + dV) 1 f L (du dV) (54) q: ,v dv' u dv' ="2 Cd ,v dv' - u dv' , 

which also holds for arbitrary u satisfying the edge 
condition and zero initial conditions. (See the Appendix 
for a proof.) Hence we have 

fCd(w:;,-u;:-)=-i ~;~ :;,-u:;} (55) 
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Initially we know only that this relation holds for func
tions u satisfying the edge condition, but it is readily ex
tended to hold for other u as well. 

Finally, using (55) in (53) gives us 

- 27TW(t - T,P, Q) 

=-1 fL 1 .L2 fv(t- t', IpP'1 dv (t'- T, Ip'Q I) 
Cd «2) \ dv' 

-v{t'-t IP'QI)dv(t_t' IPP'lf (56) 
, dv' ' ~ , 

where the superscripts L 1 , L2 mean we are to take the 
InE1 part, with E2 fixed, and then take the InE2 part of 
that result. 

7. 01 FFRACTION BY A CURVED EDGE 

The treatment7 of the problem of diffraction by a 
planar curved edge had the one unsatisfactory feature 
that the elementary solution corresponding to the diff
raction region-which we have been denoting by w-was 
constructed in the form of an infinite series. This fea
ture is unsatisfactory for two reasons: For one, the 
series was not shown to converge; for another, even the 
computation of the individual terms of the series would 
be a formidable task. 

But we now know how to get w directly without having 
to resort to infinite series at all. Namely, we use either 
Eq. (53), if we know the values of w appearing in the sur
face integral, or use Eq. (56) otherwise. Since these re
lations were obtained by an argument that did not depend 
upon the edge being straight (but did require that mul
tiple diffractions do not occur), they still hold. 

The reason for mentioning (53) is that it is definitely 
Simpler than (56), and because the values of w on the 
diffraction wavefront c 4 have already been obtained in 
Ref. 7, Eqs. (18) and (26), even for a curved edge. 

With this change in the manner of obtaining w, the 
solution given in Ref. 7 for diffraction by a curved edge 
is complete. 

APPENDIX 

1. Proof of Eq. (50) 

Taking cylindrical coordinates (r', e', z') about the 
edge, we have 

f L (, du dV) 
qi \ dv' - u dv 

= fLff .1 ~ (t' r' e' z') [t- t'2 - r 2 - r'2 
r' cHI' ' , , 

+ 2rr' cose - e' - z - z'2J-1 dt' dr' dz' 
evaluated at ()' = e + 1T 

= fLffl ~(t' r' e +1T,Z')(t-t'2_A2)-1 
r' ae' , , 

x dt' dr' dz', 
where 

A2=r+r'2+z- z '2 (Al) 

= fL f f 1- ~ (t - A - E r', e + 7T, z')(t - t'2 - A2)-1 
r' ae' , 

x dt'dr'dz~ + fL f f .1 (au (t' r' e + 7T,Z') 
r' ae' , , 

- ~ (t - A - E, r', e + 7T, z,)\ 
iW '} 

. (t - t'2 - A2)-1 dt' dr' dz', 

the integration over t' being over 0 < t' < t - A-E. 
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But the last integral clearly converges to a finite limit 
as E -L 0, so its InE part is zero. The first integral is 

! r I ~ ~ (t - A - E r' 13 + 11 z') In E(T + A) 
2 r' ae' '" (2A + E)(l - A) 

. A-1 dr' dz', 

which clearly has InE part equal to just 

! II.!. ~ (t-A r' (J + 11 z,)· A-1 dr'dz'. (A2) 
2 r' a8' " , 

As for the other integral in (50), take as approximat
ing surfaces Cd (E): t' = t - E - A, with A given by (AI). 
By taking coordinate systems, s, cp, 8' on this surface 
where s, cp are given by 

r' + r ::::: S coscp, z' - z ::::; S sincp, 

the second integral in (50) is 

III ~- au - ow) w -- u - s(s coscp - r)dsdcpdl3', 
as as 

where u denotes 

u(s,cp,I3'):= u(t- s- E,r',8',z') (A3) 

::::: I I [uws(s coscp - r)J ::~-:ecl" dcpd8' 

I - (! aw -\ - u (s(s coscp - r) a; + (2s coscp - r) W} 

x dsdcpde'. (A4) 

The first integral in (A4) vanishes because of the initial 
condition and edge condition on u. The second integral 
is equal to 

- I I I uw' \ 2s(2r + s cosp) 
I [4r(s coscp - r) cos2 ~ (8 - 8') + 2SE + E2] 

+ E coscp - rt dsdcpd()' 
2s + E , 

,;1- I II.!. u Al/2Icos~(8-13')ldl3'dsdcp 
. 211 r' [cos2 !(e - 13') + AJ2 

A =~. (A5) 
2rr' 

For the 8' integration in (A5), clearly the only portion 
which has a nonzero limit as E -L 0 is that near 13' == 6 ± 1T. 

In this neighborhood we can make the change of variable 

13'::::; 8 + 1T + 2 arcsinx, 

so that the integral is 

2 ! . A1/2 I I I" ~. xdx 
1T 0 r' (x2 + A)2 

= - ,\1/2 I I - -- dsdcp 1 I [ it J6 
1T r' x 2 + ,\ 0 

-! A1/2 I I I _1_ . .!..1- u dxdsdcp 
11 x 2 + A r' dx 

~ 1T-1 I J ~A-l/2 u(t- s,S coscp - r,13 + 11,Z + s sincp) 

- 11 au / dsdcp + Q(E) as dO, 
;w\ r' 

and the finite part of this is clearly 

J ~, ::' (t- s,r',13 + 11,z')dsdcp. 
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In the original variables r', z' this is exactly the same 
as (A2). 

2. Proof of Eq. (54) 

Taking the same surfaces C d(E) and variables (s, cp, 8~ 
as in (i) above, the right-hand side of (54) is 

! I L I I iv au - u av) s(s coscp - r) dsdcpdl3', 
2 \: as as 

where now 

v = [4r(s coscp - r) cos2 ~ (8 - e') + 2SE + E2rl 

=: - 4r F J I u( 2ES 
[4r(s coscp - r) cos2 !(8 - 13') + 2SE + E2J2 

1 )dSde'dCP. 
[4r(s coscp - r) cos2 ~ (8 - 8') + 2SE + €2] (A6) 

Evidently the only portion of the range of 13' which can 
contribute a nonzero InE part is that near 13' = 13 ± 1T. 

For this range make the same change of variable from 
13' to x as before, using now the observation that 

2 16 it( A 
o (x2 + E)2 

~)dX ::::: 2 16 u!L _x_ dx 
x 2 + ~ 0 dx x 2 + A ' 

·s 
A == --. E, 

2rr' 

= L2xu ] Ii 

l,x2 + A 0 

(A7) 

= 2xu -In(x2 + A) du + 16 d u . In(x2 +A)dx, 
[ 

- ~b 2-

x 2 + A dx 0 0 dx2 

which evidently has lnE part equal to just dU/dx Ix~o, or 

2' au (t- s,r',e + 11,Z'). (AS) 
a8' 

Now multiplying by 1/4rr' to make (A7) comparable to (A6), 
the result is (A2) again. 

3. Veritication that (56) is equivalent to (53) 

With w(t'- T, pI, Q) defined as in (32) and vet - t', 
I PP' I) as in (31), the right-hand side of (53) is, approxi
mately (dropping squares and higher powers of E'S), 

J=-1I-1 III /2E~/2p3/2..jY;;lcos~(e 13')ldsdl3'dcp 

(r€z - 2SD.)[2pr' cos2 ice - 8') + SE2]2' 

where now s, cp are given by 

p + r' = S coscp, z'- Z = S sin(j?, 

it means u(t' = T + S + E2), 

(A9) 

r€2:= t- T- E~ - r 2 p2 - z- z2 - 2rp coste - 8'), 

D <2:= t - T - E2 - (r cos8 - 13' + p) coscp + (z - z) sincp. 

The lnEl part of (A9) is obtained by integrating over s, the 
result being the same as dropping the S integration, re
plaCing r € - 2sD ( by 2D € ,and replacing all s's by 

2 2 2 
r € /2D €' The result is 

2 2 

J:= - P11-1 

..jE2 r •. ..j2p(r, coscp - 2pD cJ I cos ~ (e - 8') Id8'dcp .11 2 2·. • 

[2p(r< coscp - 2PD,) COS2~ (e - 8') + E2r .,,)2 
2 (AIO) 
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In exactly the same fashion the right-hand side of (56), 
say, 

1== i p I I I ( 2€2
S 

[2pr' cos 2 ~ (6 - 8') + S€2]2 

I 
- ) (r - 2sD )-1 dsd8'dcp 

[2 pr' cos2 i (6 - 8') + S€2] €2 €2 ' 

has ln€l part equal to 

r € 
1== pI I ( €2 2 

[2p(r'2cos cp - 2PD'2) cos2 i(6- 8') + r f2 €2]2 

_ i )d8'dCP. 
[2 p(r€ coscp - 2 pDf ) cos2 ~ (6 - 8') + r € €2] 

2 2 2 (All) 

We need to show that the ln€2 part of (All) is the same 
as the finite part of (AIO). 

Obviously we obtain zero finite part in (AIO) and zero 
lnE2 part in (All) from those portions of the integral for 
which 8' is bounded away from e ± 11 and also cp is 
bounded away from the zeros of r E coscp - 2pD € . 

2 2 
Denote by 11 ,12,13 and J vJ 2,J 3 the remaining integrals 
wherein, respectively, 8' and cp both are near the critical 
values, 8' is near e ± 11 but cp is bounded away from its 
two critical values, cp is near one of its critical values 
but 8' is bounded away from e ± 11. 

In 12 ,J2 make the change of variables from 8' to x 
given by 

a = 2p(r€ coscp - 2pD<. ) 
2 2 

(A 12) 
(note that a here does not involve 8') to get 

__ i_) dxdcp , 
x2 + €2 

II 
xl€;. 

J 2 = f(x, cp) (x2 + €2)2 dxdcp, 

where 

f (x rn)=pa-1/2r1/2/[tr sint(6-8') 
, 't' E2 €2 

+ 2rp sin(8 - 8') cosi(6 - 8')]. 

Integration by parts gives 

12 = l... I (f(x, cp) __ X_) dcp _l... I I 'Of. _x_ dxdcp 
211 x 2 + €2 217 ax x 2 + €2 

which can now be seen to have In€2 part equal to 

I I 'Of - - (0 rn)drn 
411 ax'~ ~, 

(AI3) 

while similarly 

J 2 = I - 2 2 dcp + - I I - dxdcp, ( 
.!.€ f ) 1 €2 'Of 

x 2 + € 2 2 x 2 + € 2 ax 

which has finite part equal to (AI3). 
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For 13 ,J 3 we make a change of variables from cp to y 
given by 

2p(r E coscp - 2pD E ) = y2 sec2 t(6 - 8') r € 
2 2 2 

(AI4) 

so that 

13 =11-1 II( € - ~ )yg(y,8')dYd8', 
(y2 + €2)2 y2 + €2 

/E: y 2 
J 3 = II 2 g(y,8')dyd8', 

(y2 + €2)2 

g(y, 8') = sec2 i (6 - 8') /-.!L. (r E CO$cp - 2pD € ). 
Idcp 2 2 

One finds readily that the finite part of 13 and the ln€ 2 
part of J 3 are each equal to 

1... I g(O, IJ')dIJ'. 
411 

Finally, in 11 and J 1 make the change of variables from 
8', cp to x,y given by 

2 p(r € coscp - 2 pD € ) = Y 2, 
2 2 

I cos~(e - IJ') 1= xr1 / 2 
€2 ' 

so that 

(AI5) 

(A16) 

11 =11-111(( 2:: )2 - (2 2i+ ))Yh(x,Y)dxdY , 
x Y €2 X Y €2 

.JE; xy2 
J 1 = II h(x,y)dxdy, 

(x 2 y 2 + €2)2 

where 

h(x,y) = r~ (~(r€ coscp - 2pD€ ) 
2 dcp 2 2 -1 

x [tr'2 sini(e - 8') + rp sin(8 - 8') cosi(6 - 8')]) . 

The computation is a little more complicated in this 
case than in the previous cases but one gets, integrating 
over x E. (0,6) andy E. (0,"),), the finite part of Ji and the 
ln€ 2 part of 11 are each equal to 

__ 1_ h(6,0) + 1... ah (O,y) In(Oy). 
4116 411 ax 

This completes the verification. 

*This work was supported by the United States Atomic Energy 
Commission. 
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A perturbation method for quantum mechanical problems is presented in which the successive terms 
are obtained by algebraic recurrence relations without the use of any diagrams. Two examples, one 
an anharmonic oscillator with quartic self-interaction, and one a spin with quadratic self-interaction, 
are given to illustrate the use of this recurrence relation perturbation method. 

1. INTRODUCTION 

The study of a quantum system in equilibrium has 
centered mainly in determining the energies correspond
ing to the Hamiltonian of the system and in determining 
the thermodynamic partition function of the system. The 
basic quantum mechanical operators encountered are 
well known: the boson creation and annihilation operators 
at and a, and the spin operators S", S+, and S-, and the 
basis functions most commonly used for these operators 
are the I n) for the boson operators and the IS, m) for the 
spin operators of total spin [S(S + 1)]1/2, where m =-S, 
-S + 1, ... ,S. In general, the energies and the partition 
function of a quantum system can only be determined ap
proximately by perturbation methods and the most wide
ly used of these up to now is probably the diagram 
method. 

More recently, the following two developments have 
provided the motivation for the work reported in this 
paper: 

(1) The author1,2 calculated exactly the partition func
tions and derived the phase transition properties of the 
Dicke and some generalized Dicke models of super
radiance in the thermodynamic limit by employing the 
Glauber's coherent states3 I a) for the photon field. An 
interesting point to note from these calculations is that 
the coherent states I a) are a convenient basis for the 
calculation of the thermodynamic properties of the Dicke 
model although they appear to lack any direct physical 
meaning. It was also noted by the author2 that the ther
modynamiC and phase transition properties of the BCS 
model of superconductivity can be very simply derived 
by using the Bloch coherent states4

• 5,6 I/J.), which are 
the analog of the Glauber's coherent states for the photon 
field, for the spin system. The concept of coherent 
states7 was originally developed in connection with the 
so -called phase space methods which go as far back as 
Wigner's8 original work on the Wigner distribution func
tion. Following the work on the Dicke and the BCS mod
els, the author was prompted to try to look for new 
representations for the Hamiltonian of an arbitrary 
quantum system which might prove to be more convenient 
to use than the traditionally used representations. 

(2) In another development, Bender and Wu9 recently 
published a series of papers dealing with the energy ex
panSions of a quantum anharmonic oscillator. One of the 
methods they used was a difference equation method 
which made no use of any diagrams. Independently, 
HeIleman and Montroll10 also developed a recurrence re
lation method to study the classical anharmonic oscil
lator. A more general recurrence relation method was 
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also used earlier by Schweber. 11 However, 'a recurrence 
relation method has never been developed, to the best of 
the author's knowledge, for the study of systems involv
ing (one or more) spins. 

The contents of this paper consist of the following: 

(i) In Sec. 2, we deduce, by means of the coherent 
state representation, the following representation of the 
boson operators: 

o ai- Zj' a - - (1.1) 
I OZI 

where z's are arbitrary complex variables (independent 
for different i). Representation (1.1) was studied by 
Bargmann12 and others. 13,14 In terms of this representa
tion of the boson operators, the energy equation 

(1. 2) 

where H(at, al) denotes H(ai,~,~,~, ••• ), is trans
formed into the form of 

(1. 3) 

where /(ZH Z2' ••• ) is a power series in ZH Z2' •••• 

(ii) In Sec. 3, we deduce, also by the coherent state 
representation, the following representation of the spin 
operators: 

(1. 4) 

where z's and b'S are arbitrary complex variables. 
Representation (1.4) was used by Bargmann15 and 
others. 14,16 In terms of this representation of the spin 
operators, the energy equation 

H(Sf, S;, Si) I E) =E I E) (1. 5) 

is transformed into the form of 

H( t(ZI O~i - i: j a°!;J, Zj OObj , bl o~J 

X /(b1> z1> i:2, Z2' ••• ) 1 
C1,C2, ... sl 

Copyright © 1974 American Institute of Physics 
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where .f(tu Zu t2 , Z2' ••• ) is of the form 

II {t2S-K ZK L) C t-I>zl>} (1. 7) 
I I I I> I> I I • 

(iii) In Sec. 4, we consider a general eigenvalue equa
tion of the form 

{Ho(Zi' O~)+Mll(Zi' o~)}f(ZHZ2"")=Ef(Zl>Z2"") 
(1. 8) 

and describe a recurrence relation method by which the 
eigenvalues E(~) can be expanded in a power series of ~. 

(iv) In Sec. 5, the recurrence relation method is ap
plied to two specific examples. 

(v) Some concluding remarks are given in Sec. 6. 

2. SYSTEMS OF BOSONS 

Let us first consider the case of a single mode oscil
lator. The creation and annihilation operators, at and a, 
as is well known, satisfy the commutation relation 

[a, at] = 1 (2.1) 

and the state vectors I n) acted upon by a and at are 
r,iven by 

and 

at In) = (n + 1)1/21 n + 1) • 

(2.2) 

(2.3) 

Another convenient set of state vectors for representing 
the state of the system is the set of Glauber's coherent 
states3 la) which are defined as the eigenstates of the 
annihilation operators, namely 

(2.4) 

and 

(2.5) 

In terms of the state vectors In), the coherent states 
I a) are given by 

2 an 
la)-e- 1al /2'" ~ In) - '-: (n!)1/2 (2.6) 

and 

(2.7) 

The states la), while not orthogonal, are complete, 
namely, 

f d~ la)(a 1=1 (2.8) 

where d2a means d(Rea)d(Ima). The scalar product of 
two coherent states is given by 

(a I ~) = exp(a * ~ - ~ I a 12 _ ~ I ~ 12) . (2.9) 
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where 

(2.12) 

The above properties of the coherent states [Eqs. (2.4) 
to (2.12)] were given by Glauber. 3 

Now consider a Hamiltonian H(at, a) in which the op
erators a and at are normally ordered, namely, let 
H(at , a) be of the form 

H(at , a) = L) L) H mn(at)"'an , (2.13) 
m n 

and consider the eigenvalue equation 

H(at, a) IE)=E IE). (2.14) 

The state I E) which, in terms of the state vectors In), 
is given by 

.. 
IE)= L)cnln) 

n=O 

can be expressed in terms of the set of Glauber's co
herent states by 

IE) = f d;~ e-1812/2f(~*) I (3) 

where 

(2.15) 

f(~*) = t Cn(~:r2 . 
n=O (n.) 

(2.15') 

Multiplying both sides of Eq. (2.14) by an arbitrary state 
(a I, we obtain on the left-hand side 

(a IH I E) = f d;~ e-1812/2 H(a*, (3).f(~*)eOl*s-laI2/2-1812/2 

by noting the relations (2.4), (2.5), and (2.9). 
Therefore, 

(2.16) 

(a IHIE)=e-'OI,2/2L)L)Hmn(a*)"'f ~" eOl*8-1812~.f(~) 
m n 1T 

= e-laI2/2 H1a* -o-)f(a*) 
~ 'oa* , 

where (2.18) was obtained from (2.17) by using the 
formula 

(2.17) 

(2.18) 

(2.19) 

f ~f3 ea*s-1812~nf(~*) =(o!*)".f(a*). (2.20) 

On the right-hand Side, we obtain 

E(a IE)=E f d;" e-1812/2f(f3*)eOl*S-laI2/2-1812/2 

2 
=e- 1al /2Ef(a*). (2.21) 

From (2.19) and (2.21), we have 
Thus an arbitrary state Ig) given by, say, 

Ig)=L) Cn In) 
n 

(2.10) H(a*, o!*)f(a*) = Ef(a *) 

can be expressed in terms of the states I a) by or, since a * is an arbitrary complex variable, we write 

Ig)= ?Te-1al /2g(a*) la), f d2a 2 
(2.11) (2.22) 
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This suggests a representation of the boson creation and 
annihilation operators given by 

at_z 

and (2.23) 

a 
a-az 

which, as can be verified, satisfies the commutation re
lation [a, at] = 1. We shall refer to (2.23) as the Barg
mann representation (or realization) of the boson opera
tors. In the transformation of Eq. (2.14) into Eq. (2.22), 
the eigenvalues of the equation are kept unchanged. The 
eigenfunctions, on the other hand, are expressed in a 
'different form from the original eigenfunctions I E). This 
representation f{z) of the eigenfunctions has the form of 
a power series in z and cannot be directly associated 
with any physical interpretation. The energies, of 
course, are the physically most Significant quantities. 
Whether or not the corresponding representation of the 
eigenfunctions has any direct phYSical meaning should 
not worry us or prevent us from looking for the most 
appropriate form of the eigenvalue equation for the de
termination of the energies of the system. To get an 
idea of what advantage would be gained by working with 
the Bargmann representation, let us compare it with the 
SchrOdinger representation for the case of a Simple har
monic oscillator for which the energy levels are given by 
EJr = t + K, K = 0,1,2, ...• In the SchrOdinger repre
sentation, the position and momentum variables are rep
resented by x-x and p- -ia/ax and the energy equation 
for the oscillator is 

(2.24) 

with the eigenfunction uK(x) corresponding to the Kth 
energy level given by 

uK(x) = e-,,2 /2H K(X) , (2.25) 

. H K(X) being the Kth Hermite polynomial. In the Bargmann 
representation, the energy equation is given by 

(z! + t)f(z) = Ef(z) (2.26) 

with the eigenfunction fK(z) corresponding to the Kth en
ergy level given by 

(2.27) 

It is seen that the eigenfunctions (2. 27) are very much 
Simpler than (2.25).11,12 Indeed one of the reasons that 
the occupation-number representation is Simpler to use 
than the Schrodinger representation is that one does not 
have to deal with eigenfunctions of the form (2.25) which 
are somewhat cumbersome, even though generally 
speaking the operators in the occupation-number repre
sentation are more abstract than the differential opera
tors. The remarkable Simplicity of the eigenfunctions 
(2.27) suggests that the Bargmann representation (2.23) 
might be more convenient to use in the study of some 
quantum system of bosons than would the occupation
number representation. 

The generalization to the case of more than one mode 
is straightforward. Instead of functions of one variable, 
we have functions of several independent variables 
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ZlO Z2" •• , where the subscripts refer to modes with 
frequencies VlO V 2, • •• , respectively. 

3. SYSTEMS OF SPINS 

Consider a single spin whose x, y, and Z components 
are S", SY, and S", respectively. Let the total angular 
momentum of the spin be [S(S + 1)]1/2, i. e., let the 
eigenvalues of S" be given by -5, -S + 1, .•. ,S. The S+ 
and S- operators are defined as usual by 

S-=S" -iSY • 

The basic commutation relations are 

[S:, S~] = ± 1) l.,st , 
[S;, Sj] = 21iIJS: . 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

The state vectors IS, p) acted upon by S., S-, or S" are 
given by 

s+IS,p)={(p+ 1)(2S _p)}1/2IS, p+ 1), 

S-IS,p)={P(2S -p+ 1)}1/2I S,p-1), 

S'IS,p)=(S - p)IS,p). 

(3.5) 

(3.6) 

(3.7) 

There exist spin states analogous to the Glauber's co
herent states for the bosons. They are referred to as 
the Bloch coherent states4

,5 I J1.) defined by 

1 ~ ( (2S) ! )1/2 
1J1.)= (1+ 1J1.12)5 p.o P!(2S-p)! J1.

P
lp) (3.8) 

and 

1 25( (2S) , )1'12 
(J1.1 (1+1J1.12)5 E P!(2S":p)! (J1.*)p(p1 (3.9) 

where, for Simplicity of notation, we have denoted the 
state vector IS,p) by Ip). The various properties of the 
coherent states ! J1.) were given by Radcliffe4 and can be 
summarized as follows: 

(i) The states I J1.), while not orthogonal, are complete, 
namely, 

2S+ 1 f tPJ1. 
-7r- (1 + I J1.12)2 !1l)(J1.! = 1 (3.10) 

where tPJ1. means d(ReJ1.)d(ImJ1.). 

(ii) The scalar product of two coherent states is given 
by 

(3.11) 

The completeness relation enables us to express an ar
bitrary state I E) given, say, by 

25 
1E)=~cp!P) 

p=o 

in terms of the coherent states I J1.) by 

I ) 2S + 1 f tPll * ! E = -7r- (1 + I J1.12)S+af(J1. ) J1.) 

where 
25 

f(J1.*) = ~ Cp(J1.*)P. 
p.O 

(3.12) 

(3.13) 

(3.14) 
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Now consider a Hamiltonian H(S",S+,S-) in which the 
operators S+ and S- are normally ordered, and consider 
the eigenvalue equation 

H(S",S·,S-) IE)=EI E). (3.15) 

Multiply both sides of Eq. (3.15) by an arbitrary coher
ent state (X I. On the right-hand side, we get 

E(XIE)=[l/(l+ IXI 2)S]Ef(X*) (3.16) 

by making use of the formula 

2S+1j tPp, *" ,. ml(2S-m)1 
-1T - (1 + I p,1 2)2S+2 (p, ) p, = 0",. (2S) I • 

(3.17) 

On the left-hand side, a typical term is 

2S ;1 f (1 +~~2)S.2f(p,*)(XI (S+),.(S-)" 1 p,). (3.18) 

But, 

1 "'{ (2S)! 
(S-)klp,) (1+ 1/.L12)S ~ Pt(2S_P)tP(P-l) ••• {P-k+l) 

x (2S - P+ 1)(2S - P +2)··· (2S - P+ k)Y
/
2 p,plp- k) 

and 

1 {(2S) I }1/2 
(1+ 1/.L12)S ~ ql(2S-q)1 

x(2S - q)(2S- q-l)··o (2S -q-k+ 1)p,4+"1 q) 

(3.19) 

(x 1 (S·),. 1 L){ (2S)! 
(1+ IA12)8 p pl(2S-p)1 

x p{P -1)·· • (p - m + 1)(2S - P + 1)(2S - P + 2) 

••• (2S - p +mf
/
2(x*)p(p -m 1 

1 {(2S) ! }1/2 
(1 + I X 12)S ~ q I (2S _ q) I (2S - q) 

x (2S - q -1) ••• (2S - q - m + l)(X *)4." (q 1 • 

(3.20) 

Hence, 

and 

1 
(Xl (S+)"(S-)"I p,)= (1 + IXI2)S(1 + I p,12)S ~ 

(2S) ! 
x (n _ k)! (2S _ n + k)! (2S - n + k) 

X(2S -n+k -1)··· (2S -n+ k -m + 1) 

x (2S - n + k)(2S - n + k -1) 

••• (2S - n + 1 )(X .)">,.-" p," (3.21) 

2S+1 f tP/.L f(p,*) (Xl (S+)'"(S-)"I p,) 
1'1 (1 + I p,12)2 

1 
- --2\'S ~c n(n -1)··· (n - k + 1)(2S -n + k) 
- (1 +1 AI) "" 

x (2S -n + k -1)··· (2S -n + k -m + l)(X*)"+ .... " 
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::: (1 +1\1 2)S ~c"( x* :1:)'" (I: o!*J 1:
2S

-lI(X*>{.1· 

(3.22) 

Equation (3.22) suggests a representation of the spin 
operators S· and S- given by 

(3. 23a) 

Considering in a similar way (X 1 (S·)'" I J.,L), or by simply 
using the commutation relation (3.4), gives the cor
responding representation for S·: 

(3. 23b) 

It is easy to verify that the representation (3. 23a), 
(3.23b) satisfies the commutation relations (3.3) and 
(3.4). We shall refer to (3. 23a), (3. 23b) as the Barg
mann representation of the spin operators. 

It follows that if we consider a functionf(t,z) given by 

f(l:, z) =L) cn I:2S -"z", (3.24) 
n 

the energy equation (3.15) is transformed into 

H(t(Z:z -1::1:)' z:I:' l::z)f(l:,z)le=l=Ef(l:,z)led' 

(3.25) 

The variable z is the main variable while I: is what we 
shall call the companion variable as it is set equal to 1 
after being operated on. 

The advantage of the above representation over the 
traditional spin representation is again plainly clear. In 
the Bargmann representation, the eigenfunctions are 
simple power series of the form (3.24). In the tradition
al representation 

and 

o 0 
sr_ yoz -z oy , 

a 0 
SY-z--xoX oz' 

a a 
S"-x--y-oy ax' 

(3.26) 

the eigenfunctions inVOlve, in general, the product of 
some exponential with the associated Legendre poly
nomials which are somewhat cumbersome. 

The eigenfunctions of S .. , namely, the solutions of 

t(z:z -/::/:)f(l:,z)le=l=Ef(/:,z)IM' 

are easily seen to be given by 

fK(I:, z) = /:2S-KZK 

with 

EK=-S+K, K=0,1,2, •.• 

(3.27) 

(3.28) 

(3.29) 

The generalization to the case of more than one spin 
is again simply done by affixing the subscripts i = 1, 2, ••. 
which refer to the spins, to the variables /: and z. 
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4. PERTURBATION THEORY USING 
RECURRENCE RELATIONS 

In this section, we present a perturbation theory using 
a recursive method. As pointed out in the Introduction, 
the recurrence relation method was used by Bender and 
Wu9 and Schweberll in their study of harmonic and an
harmonic oscillators. We shall describe the method in a 
more general setting here so that the generality as well 
as the limitation of the method will become clearer. We 
start with a given eigenvalue equation in the form of a 
differential equation such that the operator is a function 
of Zl and a/az l, i = 1,2, .•• , where z/s are arbitrary 
complex variables, and the eigenfunctions are functions 
of z!' Consider first the single variable case. Let the 
eigenvalue equation be 

(4.1) 

Suppose that H can be divided into Ho, the unperturbed 
part, and AHH the perturbing part; 1. e., if 

H(Z':Z) =Ho(Z':Z)+AH1(Z':Z) , (4.2) 

then 

{Ho(Z' :Z) + AH1(Z' :Z )}q,(A, z) =E(A)q,(A, z) • (4.3) 

Let 

(4.4) 

and 

(4.5) 

where K denotes, in the case H represents a Hamiltoni
an, the energy level. The superscript K if often omitted 
for convenience in the follOwing discussions. Substituting 
(4.4) and (4.5) into (4.3), we get 

to A n{Ho (Z' :Z JBn(Z) + H1 (Z' :z) Bn_1(Z)} 

(4.6) 

Let us write 

q,(A, z) =Bo(z) t {3n(Z)An (4.6 ' ) 
n.O 

so that {3o(z) = 1. We now consider only the case that 
Bo(z) is of the form ZK which, as indicated in the preced
ing sections, is the form of the eigenfunctions of the un
perturbed Hamiltonian normally considered. If Ho and 
H1 are given by 

( a) 1 J (a)J Ho Z,;- =E Eflizl;- , 
uZ 1=0 i=O oZ 

(4.7) 

(4.8) 

where I and J are the highest powers of Z and a/az in Ho 
for which fli *0, and P and Q are the highest powers of 
Z and a/az in H1 for which gpq * 0. Then Ho(z, a/az)Bo(z) 
Xi3n(z) and H1(z, a/az)Bo(Z){3n_1(Z) can be written in the 
form of 
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where {3nl.r) denotes the rth derivative of {3n(z) with respect 
to z, and 

(4.10) 

fr(z) and gr(z) being .a finite linear combination of powers, 
positive or negative, of z. Substituting (4.9) and (4.10) 
into (4.6) and noting that 

HO(Z' :z)Bo(Z) = AoBo(z) , 

we get 

(4.11) 

~ An{ ~fr{z)i3~r)(z) + ta gr(Z){3~~I<Z)} = ~ AnB An_p!3p(z). 

(4.12) 

If K = 0, fr(z) and gr(z) contain no term involving negative 
powers of z, and the highest positive powers of z in 
fr(z) and gr(z) do not exceed I and P, respectively. If 
K* 0, fr(z) and gr(z) in general contain terms involving 
negative as well as positive powers of z. It is easy to 
show that the highest positive powers of Z infr(z) do not 
exceed 1+ r, the highest positive powers of Z in gr(z) do 
not exceed P + r, the highest negative powers of z in 
fr(z) do not exceed -J + r [1. e., the lowest powers of z 
infr(z) are not smaller than -J+r] and the highest nega
tive powers of z in gr(z) do not exceed -Q + r. 

Now comes the crucial step in the recurrence relation 
method. Remembering that i3o(z) = 1, we consider three 
cases separately: 

Case 1: The powers of z in all gr(z) are all nonnega
tive (Le., zero or positive). This is the case for (a) 
K=O or (b) K*O, P>O, Q=O in (4.8). We assume, for 
n:;.l, 

Pn 

i3n(z)=E bn izi • 
i=l • 

(4.13) 

Then, if the highest powers of z in fr(z) do not exceed r 
and the lowest powers of z in fr(z) are not smaller than 
-1, a substitution of (4.13) into (4.12) gives, on com
paring the coefficients of Zi, j=0,1,2, ... ,Pn, Pn+l 
equations involving Pn + 1 unknowns, An' bn H bn 2" •• , 

bn Pn which can therefore be determined unlqueiy in 
terms of the A's and b's of orders <no The conditions on 
the highest and lowest powers of z in fr(z) are seen to 
be necessary because if, for example, the highest power 
of z in one of the fr(z) is greater than r, then we would 
have more equations than the number of unknowns which 
in general would give inconsistent results, and simila!'ly 
if the lowest power of z in one or more of the fr(z) is 
smaller than -1. 

Case 2: The powers of z in all gr(z) are all nonpositive 
(i. e., zero or negative). This is the case for K* 0, P 
=0, Q>Oin(4.8). In this case, we assume, forn:;.l, 

-1 

i3n(z) = E bn izi • 
J=-O" ' 

(4.14) 

Then, assuming thatfr(z) contains one and only one term 
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Crzr , where cr is some constant, a substitution of (4.14) 
into (4.12) gives, on comparing the coefficients of zJ, 
j = 0, -1, -2, ... ,-Qn, Qn + 1 equations involving Qn + 1 
unknowns An' bn -10 bn -2" •• ,bn -Qn which can then be 
determined rec~rsively in term's of the A's and b's of 
orders <no The condition on the form of !r(z) is again 
necessary to avoid inconsistency. 

Case 3: In the more general case in which K*O, P 
and Q are both >0 in (4.8), there are positive as well as 
negative powers of z in the gr's. In this case, we as
sume, for n ~1, 

Pn 

j9n(z) = 2]' bn.Jz J , (4.15) 
J.-Qn 

where the prime in the summation indicates that the 
term j = ° is excluded. Then assuming that !r(z) = crzr , 
cr being some constant, a substitution of (4.15) into 
(4.12) gives, on comparing the coefficients of zJ, j 
= -Qn, -Qn + 1, ••• ,-1,0,1, ... ,Pn, (P+ Q)n + 1 equa
tions involving (P + Q)n + 1 unknowns, bn.-Qn, • •• ,bn._lO 
An' bn•lO • •• ,bn•Pn which can therefore be determined re
cursively in terms of the A's and b's of orders <no The 
condition that !r(z) must be of the form crzr is equivalent 
to the condition that the unperturbed part Ho(z, a/az) 
must be of the form 

HO(Z' :z) =~ CIZI(:ZY • (4.16) 

As can be seen from the preceding sections, the unper
turbed Hamiltonians normally considered are happily 
precisely of this form in the Bargmann representation. 

In the case of a spin, we have an additional variable t 
beside the variable z, but the analysis can be carried out 
in a very similar manner. We have Ho and H1 as func
tions of t, a/at, z, and a/oz. Let 

cJ>K(A, t, z) =~ B~(t, z)A" 

and write 

B:(t,z)=B~(t,z)~(t,z) , 

where B~(t,z) is t 2S -KzK and j9~(t,z)=1. Instead of Eq. 
(4.12), we have 

tAn { 2] f. (t Z)j9(T1.T2)(t z) + 2] g (t Z) 
"=1 '1"2 "1,1'2' n , "1"2 '1"'2 ' 

X i3!~1·r2)(t;, Z)}IC=l 
GO n-l 

=2] An 2] A n-1Pp(t, z) I C.lO (4.17) 
n=1 1>=0 

where 

aT 1+T 2 
j9(T1. T2)(t z) = Q(t z) , atr1azTa I"' , • 

We assume, for n ~1, 

j9n(t,'z) =2]' bn J/;"JzJ, 
J • 

(4.18) 

where the prime in the summation indicates that the 
term j = ° is excluded. In trying to determine the length 
of the power series representing j9n(t, z), the companion 
variable t is ignored and only the highest and lowest 
powers of z in gT1.T2(t, z) are considered as in the pre
vious case when z is the only variable. The conditions 
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which must be placed on the forms of f.T (t, z) in order 
1'''2 

that the recurrence relations give consistent results are 
also Similarly obtained by considering the highest and 
lowest powers possible for z in !r1. ra(t, z). For example, 
if Ho and H1 are given by 

(
0 oJ 1 ~ ta)l!. a)J 

Ho t'at,Z'az}=BPo!u\az \tat ' (4.19) 

H1(t, :t ,z, :z) =B~ gpq(z :S (t :s ' (4.20) 

where I, J, P, Q are the highest powers of those factors 
in (4.19) and (4.20) for which!IJ and gpq are *0, then 
following the previous analysiS, we have the following 
results: 

Case 1: For (a) K=O or (b) K*O, P>O, Q=O in 
(4.20), assume, for n ~ 1, 

(4.21) 

Case 2: For K * 0, P= 0, Q >0 in (4.20), assume, for 
n~ 1, 

-1 

j9n(t, z) = 2] bn Jt -JzJ • 
J=-Qn • 

(4.22) 

Case 3: For K* 0, P and Q are both >0 in (4.20), as
sume, for n~ 1, 

(4.23) 

It is easy to show that the recurrence relations obtained 
by substituting (4.21), (4.22), or (4.23) into (4.17) work 
for any Ho given in the form (4.19). 

Once the principles and the limitations involved in the 
recurrence relation method are understood, the gener
alization to the case involving more than one variable is 
straightforward. Thus for the case of a system of boson 
oscillators with frequencies IllO lIa, ••• ,liN' we assume 

cJ>IK)(A, Zlo za, ..• ,ZN) = Bl{) (Zlo za,' •• ,ZN) t 
n.O 

(4.24) 

where {K} denotes the set {KlOK2' ••• ,K;J, with 

BIK)(Z z z ) - zK1zKa • •• ZKN o lo a,···, N - 1 2 N , 

f3~K)(ZU Z2" •• 'ZN) = 1, 

and (4.25) 
I ~, 

f3/)(ZlO Za,' •• ,ZN)= L.J 
it. i2.···. iN 

X blK ) ZhZJ2 ••• ZJN 
n, h, i21 ••• ' IN 1 2 N 

for n ~ 1. Similarly, for a system of N spins, we assume 

cJ>IK)(A, tlO Zlo ••• , tN' ZN) = BbK)(tlO Zl> ••• ,tN' ZN) 

X t j9~KJ(tlO Zlo' •• ,tN' ZN)An 

n=O 

(4.26) 

with 
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X tihz{lo, 0 tilNZJl (4.27) 

for n ;;.1, and (3o(tu zu' .. , tN' ZN) = 1. 

We are reminded that the energies ElI'(A) and hence the 
coefficients A! are of the greatest interest. The varia
bles z's and t's on which the energies of course do not 
depend are merely convenient "tools" which we have 
selected for our purpose, and the set of numbers b's 
may be thought of merely as some numbers which need 
to be calculated at the intermediate stage of our calcula
tion in order to arrive at the numbers A:. 
5. TWO SIMPLE EXAMPLES 

In this section, we illustrate the recurrence relation 
method as well as the use of the Bargmann representa
tion described in the preceding sections by two simple 
examples. 

Example 1: Consider an anharmonic oscillator with 
quartic self-interaction. The Hamiltonian H is assumed 
to be (in the units h = 1, V= 1) 

(5.1) 

In the Bargmann representation, the energy equation is 

rZ i.. +.!.+.!.x(z+ i..)41f(Z)=Ef(Z). 
Ldz

24 
dzJ 

The operators are assumed to be normally (Wick) 
ordered such that (z + d/ dZ)4 means 

( d )4 d ~ d 3 d4 
(+ dz =z4+4z

3 
dz +6z

2 
dz2 +4z dz 3 + dz4 ' 

Let 

EK(X) = t A:xn 
n.O 

where 

A{[=~+K, 

and let 

fK(Z)=B{[(Z)"£ ~(Z)An 
n=O 

where 

and 

B{[(z) =ZK , 

~(z)=l , 

4. , 

t)~z)= ~ bK r J forn;;.l, 
n J=-4" n, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

the prime in the summation indicating the exclusion of 
the term j=O. Substituting (5.4) and (5.6) into (5.2), we 
obtain (omitting the superscript K in the A's and b's for 
convenience) , 

Ao=~+K, 

A1 =~K(K -1), 

and 
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(5.10) 

and, for n;;. 2, 

and 

An = t-{bn- 1,-4 +4(K -2)b._1,_2 + [4K(K -l)(K - 2) 

+ 24K(K -1) + 24K]bn_1,2 + [K(K -l)(K - 2)(K - 3) 

+ 16K(K -l)(K - 2) + 72K(K -1) + 96K + 24]bn _1,J 
(5.11) 

jbn,) + t{b""l, J-4 + 4(K + j - 2)b._1 , )-2 + 6 [K(K -1) 

+ 2Kj + j( j - 1) ]b._1,) + 4[K(K -l)(K - 2) 

+ 3K(K -1)(j + 2) + 3K(j + 2)(j + 1) 

+ (j + 2)(j + 1)j]b._1, J+2 + [K(K -l)(K - 2)(K - 3) 

+4K(K -l)(K -2)(j+4) +6K(K -1)(j+4)(j+3) 

+4K(j + 4)(j + 3)(j + 2) + (j +4)(j + 3)(j + 2)(j + 1)] 

(5.12) 

The recurrence relations (5.11) and (5.12) together with 
(5.10) enable us to determine the coefficients A's and 
b's recursively up to any order. Thus, for K=O, ~(X), 
the perturbed energy from the ground state, is given by 

~(X)=~_iX2 + NX3 +. o. (5.13) 

which agrees with the result obtained by the diagram 
method or by the recurrence relation method using the 
Schrodinger representation given by Bender and Wu. 9 

Example 2: Consider a spin S having total spin 
[S(S + 1)]1/2 with quadratic self-interaction. The Hamil
tonian is assumed to be 

(5.14) 

where the operators S+ and S- are assumed to be normal
ly ordered so that (S+ + S-)2 means 

(5.15) 

In the Bargmann representation, the energy equation is 
given by 

{l (0 0 ) (2 0
2 

2 0 0 2 (2
)} 2Zoz-tot +Xz 01;2+ Zotl;oz+t OZ2 

Xj(l;, z) 1M = Ej(t, z) I ~=1' (5.16) 

Let 

EK(X) ="£ A:xn 
n=O 

with 

A{[=-S+K 

and let 

f K(t, z) =B{[(t, z) t t):(I;, z)X' 
•• 0 

(5.17) 

(5.18) 

(5.19) 
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with 

and 

Bff(t,z) = t;2S-KZK , 

f3ff(t, Z) = 1, 

(5.20) 

(5.21) 

(5.22) 

where the prime in the summation indicates that the 
term j=O is excluded. Substituting (5.1'1) and (5.19) 
into (5.16), we obtain 

Ao=-8+K, 

Al =2K(28 -K + 1), 

and 

bi,_i =bi,i =0, 
(5.23) 

bi ,_2 = tK(K -1) , 

bi ,2=- t(28 -K)(28-K -1), 

and, for n ~ 2, 

and 

A. = (28 -K + 1)(2S -K + 2)bn_i ,02 + (K + 1)(K + 2)bn_i ,2 

(5.24) 

jb., J +{(2S -K)(28 - K -1) + 2(2S -K)(- j + 2) 

+ (-j +2)(-j + 1)}bn- i ,J-2 +{2K(28 -K + 1) - 2Kj 

+ 2(28 - K + 1)j - 2j2} b.oi, J + {K(K -1) + 2K(j + 2) 

+ (j + 2)(j + 1)}b._i , /+2 

(5.25) 

The recurrence relations (5.24) and (5.25) together with 
(5.23) enable us to determine the coefficients A's and 
b's recursively up to any order. Thus, we find 

A o=-8+K, 

Ai =2K(2S -K + 1), 

A2= t(2S -K + 1)(2S -K +2)K(K -1) 

- t(K + 1)(K + 2)(2S - K)(2S - K -1) , 

A3= - (2S -K + 1)(2S -K + 2)K(K -1)(2S -2K +3) 

+(K+1)(K+2)(2S -K)(2S -K -1)(28 -2K -1), 

A4= te(2S -K + 1)(2S -K +2)K(K -1){(2S -K + 3) 

x (2S -K +4)(K -2)(K -3) + 32(28 -2K + 3)2 

-2(28 -K + 1)(2S -K +2)K(K -1) 

+ 2(K + 1)(K + 2)(2S - K)(2S -K -1)} 

- {a(K + 1)(K + 2)(2S -K)(2S -K -1){(K + 3)(K +4) 
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- 2(K + 1)(K + 2)(2S - K)(28 - K -1)}. (5.26) 

For K = 0, E>(>..) , the perturbed energy from the ground 
state, is given by 

EO(>..) = -8 - 28(28 _1)>..2 + 4S(28 _1)2>..3 

- 2S(2S -1)(2082 - 30S + 13)>..4 + ••• (5.2'1) 

6. SUMMARY AND CONCLUSIONS 

The Bargmann analytic function representation for the 
boson and spin operators has been shown useful and con
venient for the study of some quantum systems. The 
representation enables us to formulate the recurrence 
relation method in perturbation theory in a general and 
systematic manner. The recurrence relation method of
fers an excellent alternative to the traditional diagram 
methods. We hope to apply the recurrence relation 
method to the study of a number of quantum systems in
volving one and several particles and we shall present 
the results in future publications. 
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Note on gauge invariance and conservation laws for a 
class of nonlinear partial differential equations 
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Relations between gauge invariance and the conservation laws are discussed relative to the 
Korteweg-deVries and related equations. The technique used here is conventional in field theory
the canonical formalism related to the invariant variational problem. The function of constants of 
motion. when represented in terms of canonical variables. is to generate infinitesimal partial gauge 
transformations of any order. under which the variational problem is invariant. From this point of 
view. one example is presented together with the general theory. 

1. INTRODUCTION 

The equation derived from the invariant variation 
problem 

OJ dtL[<t>] =0, 

£[<t>] = fdX~~ ~~ + H~~r -e;~)2] 
(1) 

(2)1 

is known as the Korteweg-deVries equation, which 
yields a number of conservation laws. Whitham inves
tigated this kind of variational problem, 2 and Gardner 
later discussed this problem in the Hamiltonian form 
related to this Lagrangian for a limited case. 3 

The main advantages of the theory of invariant .varia
tion, however, exist in helping to demonstrate the re
lation between invariance and conservation laws. 4 For 
example, the Lagrangian (2) is Galilean-invariant. In
variance of this kind was discussed by Kruskal and his 
group. 5 Another invariance to be pointed out here is a 
kind of gauge invariance. The quantity <t>(x,t) in (2) is 
unphysical but a "potential." That is, only its gradient, 
namely "strength," 

u=d<p/dx (3) 

is "physical." This circumstance implies the gauge in
variance of the variational problem just as in the Max
well electromagnetic theory. 6 

The purpose of the work is to show the relation of the 
gauge invariance to such conservation laws contained in 
the KdV equation in the canonical frame. 7 The potential 
<t> and the strength d<t>/ dx are treated as field quantities, 
here. Except for <t> the quantities are assumed to van
ish on the boundary of the space region, together with 
their independent small variations O<t>, o (d<t>/dx) , ... 
etc. 

2. LAGRANGIAN AND HAMILTONIAN 

The independent variational problem 

OJ L[<t>]dt=O, 

with respect to <t>(x, t) under fixed boundary values, 
leads to 

(4) 

.E..f.d<P)+[d<P + !.ex2fd<t»ld
2

<P + d
4

<t> =0 (6) 
dt\dx dx 6 \dx dx- dx4 , 

which is taken from the work of Miura and his group. 8 
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(This equation tends to the KdV equation as a - 0.) The 
variational problem (4) and the equation are both invari
ant under the gauge transformation 

<t>- <t>(x,t) +A(t), 

where A(t) stands for an arbitrary function of t, inde
pendent of x. In fact, (7) adds on the right-hand side of 
(5) a term, dependent only on the boundary values of <t>, 
irrelevant for the variation problem. 

Because of the linear dependence of L[<t>] on d<t>/dt, 
the Legendre transformation d<p/dt to p (the canonical 
momentum conjugate to <t» is not unique. The situation 
yields many possible Hamiltonians. They are formally 
different from each other, and have different functions 
in the framework of canonical theory, although they 
give equal values of "energy" under a certain compati
bility condition as we shall see. A choice for the 
Hamiltonian is 

(8) 

(9) 

(see Appendix I), this leads to the proper forms of ca
nonical field equations, 

Equation (10) is essentially identified with the KdVequa
tion at ex =0, while Eq. (11), after x-differentiation, 
gives 

d ~ d<t» d [~O'2 d
2 ) ~ d<t»~ - p_- +- p+_p2+_ p_- =0 

dt dx dx 6 dr dx ' 
(12) 

with the aid of (10). Thus, the quantity [p - (d<t>/dx)] it
self is a conserved density of Eqs. (10), (11), but, if 
we set at some time, (e. g., t= 0) 

P -d<t>/dx=O, (13) 

then (13) holds forever. It seems that the choice of the 
Hamiltonian is different from that of Gardner. The 
functions of these Hamiltonians are different, while 
they have equal values of the "energy" under the con
dition (13). 

Copyright © 1974 American Institute of Physics· 453 



                                                                                                                                    

454 Voiti Watanabe: The gauge invariance and the conservation laws 

3. POISSON BRACKET 

The poisson bracket, defined by 

- - J (OF- oC oC of) 
[F; G] = dx op(x) • o</>(x) - op(x) • o</>(x) 

leads to 

[p(x, t), </>(x', t)] = o(x - x'), 

[p(x,t),p(x' ,t)]=[</>(x,t), </>(x' ,t)] =0. 

Also, we have 

dp _ [ -
dt - - p(x, t) ,H], 

d</> -at = - [</>(x, f),H], 

(14) 

(15) 

(16) 

the canonical equations in the P. B. form, just as in the 
usual analytical dynamics. For any well-defined func
tional C[p, </>], 

dG --at =- [G,H] (17) 

gives the time development of the dynamical variable 
G, and implies that G is a constant of motion if G "com
mutes" with Ii. Of course, other properties of the 
Poisson bracket such as Jacobi's identity also hold in 
our case. 

A dynamical variable F[p, </>] is replaced by an appro
priate functional G[ p, </>] according to 

OF=E [F,G], (18) 

where E stands for an infinitesimal parameter of contin
uous transformation (see Appendix II). Equation (17) im
plies that F[p, </>] is invariant under the G-transforma
tion, if F commutes with G, and vice versa. The func
tional containing many linearly independent parameters 

an' 
(19) 

plays a similar r6le for a certain displacement of the 
variables. In particular, any Gn[p, </>] makes a "partial" 
displacement on the variables, if all G n' s are 
compatible: 

[Cm ,Cn] =0, for all n, m (20) 

and then [C" ,H] =0, if [C,H] =0. In other words, His 
also invariant under the partial displacement. 

4. GAUGE TRANSFORMATION 

The functional 

EA(t)P=EA(t)J dxp(x,t) (21) 

generates the infinitesimal gauge transformation on 
</>(x, t): 

o</> =EA(t)[ </>(x, t) ,p] =EA(t). (22) 

The Hamiltonian (8) is evidently gauge-invariant. This 
invariance implies 

[p,H]=O, (23) 

i. e. , p is a constant of motion. 
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Now, consider a generator 

(24) 

The old pair (p, </» turns into the new pair (p' ,</>') by the 
time-independent, finite canonical transformation gen
erated by i; 

(25) 

The new momentum p' satisfies the proper KdV equa
tion,8 i. e., a = O. Thus, we can regard this canonical 
transformation as the one to make a vanish. In terms 
of the new variables, consequently, the Hamiltonian 
is written as 

H'[p', </>'] = J dxH', 

H' = _ (!.P'2 + d2
p'\ d</>' +!. p,3 

2 dxa'ldx 6 . (26) 

The new momentum P' can be considered as the gener
ator of an infinitesimal gauge transformation on the 
new </>', since P. B. relations do not change under ca
nonical transformations. Moreover, time -independent 
canonical transformations do not change the canonical 
equations. This fact yields 

(27) 

The old momentum p has been formally found in terms 
of pI stepwisely 

P P' . dp' + ~-nT (p, dp' ) 
= -za dx LJ(Jl "V ' dx " .... (28) 

The densities Tn(P' ,dp'/dx, ... ) are given as linearly in
dependent polynomials (see Ref. 8). Thus, (27) and (28) 
lead to 

dT r;;;----at = lTn,H']=O. (29) 

It is essential that all of the Tn[p'] are the functionals 
of P' only, not dependent on </>'. It implies the compati
bility relation 

(30) 

to be true. Since P generates an infinitesimal gauge 
transformation on </>, TJp'] generates the infinitesimal 
partial gauge transformation of order n on </>( </>' ,p'). The 
Hamiltonian is, therefore, invariant under partial gauge 
transformations of any order. This invariance thus 
yields many constants of motion of the KdV equation. 

The parameter a, running over all real nonnegative 
values, gives a class of equations, any element of which 
turns into another by means of a canonical transforma
tion. This class is hereafter called "KdV class" for 
short, since the class contains the KdV equation as its 
element a =0. 
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5. GENERAL REMARKS 

The Lagrangian functional of general form 

- ~ dcp dcp -~dCP] L[cp]= dx---F-dx dt dx ' 
(31)10 

where 

-fdcP]_( (dcp cPcp ) 
Flflx - J dXF\dx' W'''' , (32) 

contains (2) and (5) as special cases. The variation 
problem of (31) is certainly invariant under the trans
formation (7); linear dependence of (31) on dcp/dt leads 
to nonuniqueness of the Legendre transformation, and 
consequently to many possibilities for the Hamiltonian 
formalism. As is seen in Appendix I, however, the 
Hamiltonian 

Ii[p CP]=F[P]_.!(dxoF{P_dCP) 
, 2) op~ dx 

is a reasonable chOice, and (33) leads to canonical 
equations 

dp _ 61i _ 1 d of 
dt - - ocp -"2 dx op , 

dcp _ 01i _ o~ ( dcp\ + 1 of 
fit - op - - wI! - dxl "2 op . 

(33) 

(34) 

Equation (35) is equivalent to Eq. (34) only under the 
condition p = dcp/ dX, which should be given as an initial 
condition. On the other hand, Eq. (34) is formally simi
lar to Gardner's representation of the KdV equation [cf. 
Ref. 3, Eq. (5) and Eq. (31)]. However, the concrete 
functional form of F[p] now remains free. Thus, the 
gauge invariant variation problem with respect to (31), 
in general, yields the Gardner-type equation (34), which 
naturally implies [Ii, p] = O. 

Next, consider a one-parametric canonical transfor
mation by the generator 

-[p '] - ( d ' f. dp . ) ~ ,cp -) x cp S If' dx"'" a , (36) 

where a stands for the parameter of the transformation, 
and 

p = S(p, :!, ... ; 0) (37) 

is assumed for simplicity. Evidently this transformation 

,_ o"i _ (dP .) 
P - ocp,-S\f' dx"'" a (38) 

preserves the gauge properties. In terms of new canon
ical variables (p'. cp'), therefore, another Gardner-type 
canonical equation 

dp' 1 d 5F' 
dt = '2 dx W (39) 

results, where the identity 

F'[p'] = F[p] (40) 

defines a new F'[p']. So, Eqs. (34) and (39) imply, 
respectively, 
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On the other hand, p can be expressed in terms of p' in 
the formal power series in a: 

p =p' + ~ a'An(P" ~:, ..• ) (42) 

by solving (38). It is concluded that 

;tAn[p'] = 0 (43) 

holds for all n, because (34), (39), and (41) must be 
correct for all values of a. In other words, every An is 
a conserved density of Eq. (39). 

The compatibility condition 

[An, Am] = 0 

is also a triviality, and the variables p and p' gives 
rise to the infinitesimal gauge transformations on cp 
and cp', respectively. So, every An[P'] gives rise to a 
partial gauge transformation on cp'. 

6. ANOTHER EXAMPLE 

The KdV class is one example. We now want to show 
another. Let us look for the properties of a class of 
nonlinear equations, 

du (. dU){dU . ~ cPu (du)j - - exp 2za- - +2za (l-u) 7Y - -dt dx dx dx- dx 

_2 f. du cPu £l3~\ . _:I (f12u\ 2} 
- (r\u dx fiXZ + ""(jj!J + 4z rr (fXZ J = 0, (44) 

where a runs over all real values. Equation (44) is of 
course an artificial one, and appears somewhat compli
cated, but it is employed as a simple example in inves
tigating properties Similar to those found in the KdV 
class. Equation (44) is derived from the invariant varia
tion problem of 

- ~ [dCP dcp dcp (. ~ CP)] L[cp]= dx - • - - - exp 2za""""T.:l dxdt dx dx' (45) 

where u=dcp/dx. Consequently, by putting 

F[p] =) dXp2 exp (2i a a:x) (46) 

in the Gardner-type equation (34), we get Eq. (44) (there 
U must be replaced by pl. 

Next, consider the canonical transformation 

p' = o4!/ocp' = p exp(ia d'x). 
cp = o~/op, 

generated from 

~[p, cp']= ~ dxcp' p exp~ad'x) . 

(47) 

(48) 

(49) 

The second expression (48) is no longer given in detail, 
because it is less important. After the transformation 
(47) F[p] turns into 

F[p']= J dXp'2, (50) 

and the equation turns into 

dp' _ dp' 
Tt- dx (51) 
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which implies 

ap' =0 (52) 
dt 

for all real values of a. The old momentum p can be 
expressed in terms of the new momentum p , in the 
formal power series in a: 

p = p' + aAl + cJ A2 + .. " (53) 

where 

. dp' d2p' 
Al=-Z dx N' 

(54) 

The conservation property of Al is trivial; i. e., dAl/dt 
== 0 holds without Eq. (51), while that of A2 is essential; 
tiAaldt== 0 holds if and only if p' is a solution of 
Eq. (51). Thus, we have two explicit examples to show 
the relation between gauge invariance and the conserva
tion laws of a class of nonlinear equations; one the KdV 
class, the other that shown above. 

7. CONCLUDING REMARKS 

The conclusion of this work is that the existence of 
a number of conserved densities originates in the gauge 
invariance of the variational problem. 

The gauge transformation (7) contains an arbitrary 
function A(t). According to Noether, if any transforma
tion, under which the variational problem remains in
variant, possesses r parameters, then the Euler equa
tions have r conserved densities. An arbitrary function, 
as in our case, behaves as an infinite number of param
eters, and correspondingly results in the derivation of 
many conserved densities. 

It is possible to construct more examples arbitrarily 
by employing appropirate specific p[p]. Moreover, sim
ilar situations are expected when the field variable rp 
has a number of components. That may motivate wider 
examinations for classes of nonlinear differential 
equation. 

APPENDIX A: MANY TYPES OF HAMILTONIAN 

Two propositions from classical variation calculus 
are mainly relied on in the following arguments: 

(i) The variational problem remains unaltered after 
the results of the Euler equations are partially intro
duced into the original problem. 

(ii) The relations among variables, if any, must be 
considered as subsidiary conditions, and can be taken 
into the calculation by means of indefinite multipliers. 

Let us change drp/dt to ¢ in (31), and consider drp/dt 
== <p as a subsidiary condition on the independent vari
ables rp and cPo By using a multiplier p, the variational 
problem turns into 

which is performed with respect to rp, ~, and p indepen-
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dently. One of the Euler equatiOns derived from (AI) 

_ 6[; _ drp 
p - 6CjJ - dx' (A2) 

usually regarded as the Legendre transformation, (rp,~) 
to (rp,p), does not contain <i> in this case. So, the equa
tion, an imposed relation between p and rp, must be 
considered as a new subsidiary condition. 

The lack of relation p to ~ leads to a multiplicity of 
the related Hamiltonians. One of the tentative choices 
among them is 

Hfp, rp, v]== f dx *~ -L[~~J + f dXV(P- ~~) 
(A3) 

where v stand for the indefinite multiplier. This 
Hamiltonian yields p = drpj dx as one of the Euler equa
tions, which may be put into P. Another tentative 
Hamiltonian is, then 

1lfp, rp, v]==p[p] + f dXV~ - ~~), 
the last term of which is necessary to derive that 
condition. 

(A3) 

In the next step, what we have to do is to eliminate v 
so as to get the proper form of Y, which must be alein 
to the additional variable other than the canonical vari
ables (p, rp). The Euler equations from (A3) are 

dp 611 dv 
dt = - 6rp == - dx ' 

drp _ 61l _ 6P 
Tt- 6p- 6p+v, 

P =drpjdx, 

which yield 

16P 
v==- 26P' 

By putting (A5) into (A3), we obtain 

1lfp, rp] = F[p] _ ! r 6F (p _ drp) dx 
2 J 6PV dx ' 

which leads to the canonical equation 

dp _ 1 d 6P 
(ft-z dx6j;' 

~~ =_ j[~~_ ~~)} j 6~ • 

(A4) 

(A5) 

(A6) 

(A7) 

The first equation has obviously the general Gardner
type, while the second together with the first is changed 
into 

(AS) 

where by the notation 62P j 6p2 we understand an operator 
on the immediate right member: e. g., if F= t(dpjdx)2, 
o2p /6p2 functions as the differential operator d2jdx2. 
Equation (AS) implies that fp - (drpj dx)] itself is a con
served denSity; if it is set equal to zero at an initial 
moment, then it vanishes forever. This statement is 
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never a triviality, although P = difJ/ dx is partially used 
in going from the Lagrangian to the Hamiltonian forma
lism, since p and ifJ have to be treated as independent 
variables in the canonical framework. 

Thus, by (A6) we understand the terminal choice of 
Hamiltonian; which must be alien to v, and yields ca
nonical equations equivalent to the original equation if 
p- (difJ/dx) =0 is given as an initial condition. 

APPENDIX B. CANONICAL TRANSFORMATION 

A canonical transformation (p, ifJ)= (P', ifJ/) must be 
obtained from a functional W[p, ifJ'] by 

,_ oW 
P - OifJ'(X, t) , 

oW 
ifJ = op(x, t) . (B1) 

Clearly the transformation (B1) does not alter the 
Poisson bracket (14); and also it does not change the 
canonical equations of motion if W does not explicitly 
contain t. 

In particular, 

W[p, ifJ'] = J dXpifJ' + €(i[p. ifJ '], €: infinitesimal (B2) 

gives rise to the infinitesimal displacement on p and ifJ; 

oifJ = ifJ' - ifJ = 4ifJ, G[p, ifJ]], 

Op = p' - p = €[p, (i[p. ifJ]] , 
(B3) 
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up to the first order in €. Note that ifJ' in the last mem
bers is replaced by ifJ. That is, a functional G[PtifJ] 
plays the r6le of the infinitesimal displacement operator 
on P and ifJ in the sense of P. B. 

lThroughout this article, the differential operators with respect to 
space-time are denoted by dldx, dldt instead of a/ax, a/at, while 
ones with respect to the "quantities" and their derivatives are denoted 
by (a/a~) (a/a~x ) ... etc. The functional defined by the "density" 
G(<1>, d<1>ldx, d 21>ldx 2, ... ) is 
G [<1>] = Sdx G(1), d1>1 dx, d2~/dx2 ... ). In particular, a point 
function can be regarded as a functional whel! it is represented in 
terms of Dirac's delta function as 1>(x) = S dx' <1>(x ')o(x' - x), 
d1>ldx = - Sdx'1>(x')o'(x' - x), where o'(x) stands for doldx. 

2G. B. Whitham, Proc. R. Soc. A 283, 238 (1965). 
3C. S. Gardner, J. Math. Phys. 12, 1548 (1971). 
4E. Noether, Nachr. Akad. Wiss. Goett. Math.-Phys. 2, 235 (1918). 
SM. D. Kruskal, R. M. Miura, C. S. Gardner, and N. J. Zabusky, J. 

Math. Phys. 11, 952 (1970). 
6See, for example, W. Heisenberg and W. Pauli, Z. Phys. 56, 1 (1927). 
7See, for example, P. A. M. Dirac, Can. J. Phys. 2, 129 (1951). 
SR. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys. 

9, 1204 (1968). 
9The functional derivatives are defined by 

SC/ S~ = (aG/a~) -(dldx)(aG/a~x) +(d2 /dx2 )(aG/a~xx) - ... 
(see Ref. 6). 

lOIn general, the Lagrangian may be in the form 
G(d<1>ldx, d 21>ldx 2, ... ) (d1>ldt) - F[d1>ldx], which gives a 
gauge-invariant variational problem, but this general form can be 
modified to (33) by means of an appropriate canonical transformation. 

"02 F'lop 2 in (35) must be regarded as an operator on the term 
immediately following it (see Appendix A). 
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Two distinct approaches have been followed to produce an approximate expression for the third 
viria1 coefficient of a quantum system in terms of the pertinent two-particle quantities (standard T 
matrix elements and bound state eigenvalues and eigenstates): One approach is based on the T 
approximation for the self-energy in the theory of temperature Green functions, and the other uses 
the diagrams which represent the various terms in the multiple-scattering expansion of the three
particle T operator. It is shown that the result given by the former method is reproduced 
exactly by the contribution of a small number of selected diagrams. The Green function method 
requires the evaluation of the Kadanoff and Baym generalized T matrix to one order in the 
activity higher than its familiar low-density limit. The common result can be written entirely in 
terms of the lowest order self-energy and should give a reasonable approximation to the third virial 
coefficient for systems with short-range forces. 

1. INTRODUCTION 

The purpose of this paper is to study and compare two 
methods by which the third virial coefficient of a quan
tum gas can be approximated by expressions involving 
the two-particle scattering amplitude or T matrix. 

The first method is the well-known T approximation 
.according to the Green function formalism introduced by 
Martin and Schwinger. 1 We follow the development of 
Kadanoff and Baym2 which involves a generalized two
particle T matrix including many-body effects. This 
procedure gives a closed expression for the third virial 
coefficient in terms of the standard two-particle T 
matrices. This result is developed in Sec. 2. 

The second method involves the use of formal operator 
techniques3 and diagram expansions4 for the particle 
density. This approach yields an infinite set of terms 
which contain two-particle T matrices; the total contri
bution of these terms must, of course, be equivalent to 
that of the three-particle T matrix. We present the re
sults for certain selected diagrams in Sec. 3. 

In Sec. 4 we show that the contribution of a small 
number of diagrams is identical to the result obtained by 
the Green function method. In this manner we obtain an 
expression for the third virial coefficient of a quantum 
gas whose origin is understood and which is relatively 
simple but contains all of the contributions which have 
been explicitly calculated in terms of T matrices pre
viously5.6.7; this is discussed in Sec. 5. For a concise 
summary of the history of the theory of the quantum
mechanical third virial coefficient the introduction in 
the paper by Larsen and Mascheroni8 is recommended. 

We consider a dilute quantum gas with spinless 
particles of mass m which interact through two-body 
forces. The Hamiltonian of the system will be written 

(1.1) 

where K represents the one-particle kinetic energy 
operator and V the two-particle interaction operator. 
The two-body system with Hamiltonian H~2) + V may 
have bound states. 

For a system having inverse temperature {:3 and chem-
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ical potential IJ. we define ~= {21Tf3/m)1/2 and the activity 
or fugacity z = eB,.. (We set If = 1 throughout.) For a 
dilute gas (:31J.« -1, and the density of the system can be 
written 

(1.2) 

where n1 = A -3. The second and third virial coefficients 
of the system are then given by 

(1. 3) 

and 

(1.4) 

respectively. Since B2 is well known (and will be rede
rived in the course of our discussion), the problem of 
computing Bs is equivalent to that of obtaining the den
sity coefficient ns' 

The standard two-particle T operator is defined by 

To{w)=V+V{w-H~2»-lTo{w), (1.5) 

where w is a complex variable; n2 can be expressed 
simply in terms of matrix elements of To, and in this 
paper we develop an approximate expression for ns in 
terms of such matrix elements. (In fact, we will show 
that ns can be written concisely in terms of the lowest 
order self-energy function.) 

2. GREEN FUNCTIONS AND THE T 
APPROXIMATION FOR THE DENSITY 

A. Review of the theory 

The Green functions for our many-body system are 
defined by 

Gn{lo 0 on, 1'0 0 on') 

= (- i}n Tr{e-B(H-"~) T[1fJ{I)o 0 o1fJ{n)1fJt (n') 0 0 o 1fJt (1') J}/ 

Tr e-B(H-,.P) , (2. 1) 

where n= 1, 2, 3, ... , Iv is the number operator, 1fJ{I) 
and 1jl{l) are either Bose or Fermi field operators in the 
Heisenberg representation (I stands for rv t1), and Tis 
the Wick time-ordering operator. In statistical me
chanics one considers imaginary "times" satisfying 
0,,;; t,,;; -i{:3. 

Copyright © 1974 American Institute of Physics 458 
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The one-particle Green function G is related to Gz by 
the equation 

(i iJ~1 + 2~)G(1, 1') == 6(1 -1') + fo-
lil 

dtz 

xI drz~(1,2)G(2,1'), (2.2) 

where 

defines the self-energy ~. In addition, G satisfies the 
boundary condition 

(2.4) 

the convention that the upper sign pertain to bosons and 
the lower to fermions being adhered to throughout this 
paper. If we construct the Fourier transform with re
spect to space variables and the Fourier series with 
respect to (imaginary) times of (2.2) and incorporate 
condition (2.4), the corresponding Fourier coefficients 
are related by 

G(p, wp) == [wp - Ep - ~ (p, Wp)]-l, 

where Ep==pz/2m, (p== Ipl), and wp==irr{rlp+ j1. (p 
== 0, ± 2, ± 4, . .. for bosons or ± 1, ± 3, ± 5, ••• for 
fermions). We also define 

(2.5) 

G(O)(p,wp)==[w
p
-Ep]-I. (2.6) 

The particle density of our system is defined by 

n == Tr[e-B(H-I£N)l/It(r, t)l/I(r, t)]/Tr e-/l<H-"p) , (2.7) 

which is independent of rand t and can be put in the form 

(2.8) 

where T is real. From (2.5) and (2.3) it is clear that 
to obtain n a knowledge of ~ and, consequently, of Gz is 
required. 

The two-particle Green function Gz(12,1'2') describes 
the propagation of two particles added to the medium at 
l' and 2' and removed at 1 and 2. In the ladder approxi
mationz for Gz the only processes considered are those 
in which the two particles propagate independently (but 
not freely), except that they may interact with each 
other any number of times, just once at any particular 
time. The physical idea is that the collision time is 
short compared to the time between collisions; this is 
appropriate for a dilute system with short range forces. 
This approximation is described by the integral equation 

Gz(12, 1'2') == G(11')G(22')± G(12')G(21') 

+ if d3d4 G(13)G(24)V(3 - 4)Gz(34, 1'2'). 

(2.9) 

In connection with (2.3) the ladder approximation for 
Gz is equivalent to the T approximation for ~ whose 
Fourier coefficient is given by9 

~ (p, wp ) = 'f Sr1 j3- l lim /(2dPz)3 
1'~O+1 11' 

x 6 e"WPz(ppz/ T(wp + Wp ) /PPz)P(Pz, Wp ), 
Pz 2 z 

(2.10) 
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where Ippz)s== Ippz)± Ip~), n is the volume of the sys
tem (limn- "" implied), and the (generalized) T matrix 
must satisfy 

(PIP:! / T(w) /kl~) == (PIPZ/ V Ikl~) 

+ f ~irr}a~ (P1PaI T(w) Ik~~)Q(k~~, w)(k~~1 Vlk1kz), 

(2.11) 

where 

Q(k~lG, w) == - t3"16G(k~, wp,)G(lG, Wv - wp')' (2.12) 
p' 

[In (2.10), (2.1l),-and (2.12) wP' wp , and wp. carry the 
appropriate statistics while Wv mustZhave boson charac
ter.) Note that the T matrix defined here is more 
general than that which was used in nuclear matter cal
culations by Puff. 10 

The T matrix defined by (2.11) is assumed to possess 
an expansion in powers of the activity of the form 

(2.13) 

The first two terms in this expansion are required in 
this paper: To corresponds to -the standard two particle 
T matrix [i.e., matrix elements of (1.5)] and Tl can be 
expressed in terms of To; these pOints are discussed in 
Appendix A. 

B. Calculation of density coefficients 

The Fourier coefficients G(p,wp ), ~(p,wp), and 
(PIpzl T(wp)lk1ka) have been defined by (2.5), (2.10), 
(2.11), and (2.12): Whenp*O these coefficients maybe 
continued to define the functions G(p,w), ~(p,w), and 
(pIpzl T(w)lk1kz) which are analytic when w is not purely 
real. Branch cuts along the entire real axis are intro
duced for these functions. These three functions all 
have the property F(w*)==F*(w) and, therefore, ReF(w) 
is continuous across the real axis while ImF(w) is not: 
For each of these functions we will denote lime - 0 
ReF(x + ie) where x is real by ReF(x), and the symbols 
x', X- will mean x + ie and x - ie, respectively, where 
the limit e - O· is to be taken after the integration is 
performed. (See Appendix B.) Note that in the case of 
Bose statistics we encounter the Fourier coefficients 
G(p, wo) and ~(p, wo): These are connected to the cor
responding functions by G(p, wo) == ReG(p, j1.) and ~(p, wo) 
==Re~(p, j1.). 

Let us define 

S(w) == (eB(w-l£) 'f 1)-1, (2.14) 

a function having simple poles at w == w
P

' each with 
residue ± (rl. By conSidering 

limJ dw e"wS(w)G(p, w) 
'1-0' r 

(2.15) 

where r is described in Fig. 1 and assuming that 
IwG(p,w)1 is bounded as Iwl-"", it can be shown that 
(2.8) becomes 

f dp jOOdx ImG(p,x') 
n == - (2rr)3 _00 -;- z-leB'" + 1 

for Fermi statistics and 

(2.16) 
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Imw 

iR 

-iR 

W=~-iE Rew 

FIG. 1. The integration contour r referred to in the text is r R 

in the limit R- 00 and 10- O. 

f dp 100 dx ImG(p,x·) 
= _ (21T)3 P. V. _00 -:; z- l eB%-1 (2.17) 

for Bose statistics (P. V. means principal value of the 
following integral with respect to x = /l). These results 
can be combined in the form 

f dp roo dx 
n = - (21T)3 1-00 -:; ReS (x+)ImG(p, x+). (2.18) 

The self-energy function will be shown to have an 
activity expansion of the form 

~ (p, w) = Z~1 (p, w) + Z2~2(P, w) +.... (2.19) 

Combination of (2. 5) with (2.19) and substitution into 
(2.18) gives the following results for the density 
coefficients: 

(2.20) 

(2.21) 

+ e-8:x Im{[G(O) (p, X·)]2~2(P, x+)} 

+ e-B% Im{[G(O) (p, x+)]3[~l(P, x+) ]2}). (2.22) 

The next step is to determine ~l and ~2 according to 
the T approximation, (2.11) and (2.12). The summation 
in (2.10) can be performed by considering the integral 
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lim J dw e1''' S(w)(PPal T(w + w~) IpPa}.G(Pa, w), 
T~O+ ,. 

where i'is described in Fig. 2 and w~ is fixed with 
p*O. Since (PPaIT(w+w~)IPPa)" is bounded as Iwl- oo 

and since 0.;; T';; f3 we have, as I wl- 00, 

I W e1'WS{w)(pP21 T(w + wI>} IPPa},G(Pa, w) I - O. 

The T matrix, considered as a function of w, is analytic 
everywhere except on the line w=x-wl>; G{P2>w} is 
analytic everywhere except on the real axis; the poles 
of S(w) have already been mentioned. [The poles of S(w) 
on the real axis in the Bose case and on the line W=X 

- w~ in either case demand special attention, but there 
is no difficulty.] From these considerations we obtain 

~(p, w) = - 0-1 f (:;)a3 f~ ~ [ReS{x+)(PPa IT(x+ wp) IPPa}. 

xllmG(Pa, x+)+ ReS (x· - W~)G{P2' x - WI» 1m (PP2 I T(x+) I PPa},,]' 

(2.23) 

[See Appendix B for the meaning of ReS(x+) and ReS(x+ 
- wp)'] Noting that S(x - wp) is of higher order than S(x) 
by one power of z, we obtain for the desired self-energy 
coefficients 

~l(P, wp) = - 0-lf (:>3/: d; e-II%(pP21 To(x + wp) IpP2}. 

x ImG(O)(P2'X+}' (2.24) 

:E2{p, wp) = - 0-1 (:)3 f:~ [± e-2II%(pP21 To(x + wp) IpP2)" 

x ImG(O) (P2'x+) 

+ e-II%(PPal TO (x + wp) IPPa)" Im{[G(O) (Pa, X+)Ja~1 (P2'X·)) 

+ e-ll%{PPal T1(x + wp) IPPa)" ImG<O) (Pa,x+) 

± e-B%G(O) (Pa, x - wp}Im(PPal To(x+) IpP2),,]. 

Imw 

iR 

-iR 

W=~-iE Rew 

(2.25) 

FIG. 2. The integration contour 'Y referred to in the text is 'YR 
in the limit R-oo and 10-0 where Wp-I-';r O. 
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Now we can use Eq. (All) to express T1 in terms of To 
and perform certain integrations to obtain 

"Z1 (p,x+) = 0.-1/ (~S e-BEp2(PP2/ To(X+ + Ep2) /PP2)S' 

(2.26) 

n-1/ dp2. ('" dx' -B,.. ( / T (_, + +) / ) 
-.. . (21T)3j ... -:;re PP2 0"" X PP2 s 

'fn-1/ dp2 f.'" dx' e-Sx' Im(PP21 To(x'+)lpP2) 
(21T)3 _'" 1T x' - x+ - Ep2 • 

(2.27) 

It turns out that the density coefficients ~ and ns' 
given by (2.21) and (2.22), can be written entirely in 
terms of "Z1; this requires the use of Eq. (A14). The 
results are 

n =± 2-S / 2.\-s _/ dp, ('" dx e-Brlm("Zl(P,x+») 
2 (21T)3j_ 1T (X+_Ep)2 , 

(2.28) 
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/ 
dp f'" ax -BxI ("Z1(p'X+)~1"dx -8,.. - -- -e m -e 

(21T)3 ... 1T (x+ - Ep)2 ... 1T 

(2,29) 

The latter is the result of the T approximation for ns' 
One can replace ~1 in (2.29) by To according to (2.26), 
but it is convenient to postpone this step until the sum
mary in Sec, 5. 

3. SELECTED DIAGRAMS TECHNIQUE 
FOR THE DENSITY IN THE MULTIPLE· 
SCATTERING THEORY 

The use of formal operator techniques in quantum 
statistical mechanics, specifically the Watsonll multi
ple-scattering formalism, was suggested by ReinerS; 
he also discussed the relation between this approach and 
the binary collision method developed by Lee and Yang .12 

Certain advantages of the former method compared to 
the latter were discussed recently by Gibson. 1S 

The diagram techniques described in the review by 
Bloch4 are appropriate for calculating the density in 
powers of the activity: The diagrams themselves are not 
essential, of course, but they serve as a guide in 
accounting for the various contributions. The density is 
the expectation of the operator N/n in the grand canoni
cal ensemble for our system: 

n=z;;n-1Tr{e- S(H-I'Nl N}, (3.1) 

where Zgr=Tre-8(H-I'Nl is the grand partition function, 
and limn - 00 is implied; the trace is to be eva.luated 
with respect to symmetric or antisymmetric states as 
required. By introducing complete orthonormal sets of 
states containing N particles, we may write 

.. N 
n=z-ln-1L; Z L; L;(p 

gr N=1(N-1)lm1''' mN p 

x(m1"'mN/e-BH(NlP/m1"'mN)' (3.2) 

where H(Nl is the Hamiltonian for the N-particle sys
tern, P is the permutation operator, and eP = 1 for 
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FIG. 3. Linked diagrams for ~. 

bosons, :i: 1 for fermions according to whether P is an 
even or odd permutation. 

The required matrix elements of e-SH(H) will be deter
mined using the operator relationsll 

e-SH(N) =1 dw e-s", 1 
c 21Ti w - H(N) (3.3) 

and 

(3.4) 

where the path of integration C in (3.3) surrounds the 
real axis of the w plane in the positive sense. For N = 2, 
(3.4) becomes simply 

(w _H(2»-1 = (w - H~2»-1 + (w _H~2»-lTo(w)(w _H~2»-1, 

(3.5) 

where To(w) is the standard two-particle T operator de
fined by (1.5). Similarly, one could introduce the three
particle T operator, 

T(S)(w) = (V12 + V2S + V1s)[1 + (w _~S»-lT(S)(w)], (3.6) 

but that is not our intention. 

The diagrams which represent the various matrix 
elements in (3. 2) can be divided into two types, linked 
and unlinked. It is well known that the z-dependence of 
Z~ can be provided for by including only the contribu
tions from linked diagrams. 4 We choose to use the 
momentum representation,9,14 such that the product 
state I PI •• ·PH) is an eigenstate of H~Ir) with eigenvalue 
Ep +.·.+Ep . NOW, using (3.3), (3.4), and (3.5) in 
(3~2), we obt~n 

where the subscript L means that only matrix elements 
corresponding to linked diagrams are to be included and 
the subscript s is defined following (2.10). 

Let us define the operators 

T~12) (w) = V12 + V12 (W _H~2) (1, 2»-lT~12) (w), (3.9) 

and T~2S)(W) and T~Sl)(W) in analogous fashion, where 
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H~2)(l,2)=Kl +K2, etc. Now if we assume that the infi
nite series in (3.8) for a particular matrix element is 
absolutely convergent, then it is permissible to rear
range its terms in the form 

(P1PzPsi (w _H~S»-l + (w _H~S»-1[T~12)(W -Ks) + T~2S)(W -K1) 

(3. 10) 

where there are three terms involving one T (as shown), 
six terms involving two T's (one of which is shown), 
twelve terms involving three T's and so on. Note that in 
any term the same T may not occur twice in succession. 

The matrix elements of the operator (3.9) are simply 
related to the usual two-particle To matrices: thus, for 
example, 

(P1PzPsi T~12) (w -K3 ) Ip~p~p~) 

(3.11) 

This means that after introducing intermediate states 
as required each term in (3.10) can be expressed in 
terms of To matrices. Since (3.10) represents a typical 
matrix element of (3.8) it follows that ns can be written 
as an infinite series whose terms involve To matrices 
and energy denominators: these terms can be repre
sented by diagrams. 4 We intend to select a finite num
ber of such diagrams to obtain an approximation for ns' 

The diagrams for the density consist of vertical lines 
representing the free-particle propagator and crossed 
rectangles (called To-insertions), representing the To 
operator. Each line carries a factor of z, and each 
point on a line represents a "time" or, strictly speak
ing, an inverse temperature playing the role of imagi
nary time. Since To contains the interaction V to all 
orders there must not be two successive To-insertions 
connecting the same two lines. The diagrams must be 
labeled at top and bottom by the momenta of the desired 
matrix element, and each internal line segment must 
also be assigned a momentum label. For a particular 
order N one requires all possible diagrams having N 
lines. For N = 2 the number of diagrams is finite (see 
Fig. 3); for N = 3 the number is infinite and any finite 
selection of diagrams gives an apprOximation for n3 • 

The contribution of a given diagram is given by 
(21Tirl)-1 J dwe-s", F(w) where F(w) is composed of 

c 
(1) A factor (w - ~~dEIl )-1 for each space between two 

successive To-insertions l
, for each space between the 

bottom of the diagram and the To-insertion immediately 
above or the top and the To-insertion immediately be
low, or for the space between the top and bottom of the 
diagram if it contains no To-insertions, where Ell cor-
responds to the line segment with label k l ; I 

(2) A factor (klkJ IT o(w - E) I k~kJ} for each To-insertion 
where the momenta refer to the line segments entering 
and leaving the rectangle, and E equals the sum of the 
energies associated with the points at the same "time" 
on each line segment not touching the rectangle; 

(3) A factor (21T)S6(PI - PP for each line extending 
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(I) (2) (3) 
1 2 3 1 2 3 1 2 3 

2 6~ ±6~ 
312 3 1 2 3 2 1 

(4) (5) (6) (7) (8) (9) 

6~ 6~ 6~ '6~ '6~ ±6~ 
123231312132213321 

(10) (II) (12) (13) (14) (15) 

6~ 6~ 6~ '6~ '6~ '6~ 
123231312132213321 

(16) (17) (18) (19) (20) (21) 
123 123 123 123 123 123 

6~ 6~ 6~ '6~ '6~ '6~ 
123231312132213321 

FIG. 4. Linked diagrams for ~ containing three or fewer To
insertions. The number to the left of a diagram indicates the 
number of completely labeled diagrams which are equivalent to 
it. (See Bloch. 4) 

from the bottom to the top of the diagram without touch
ing a rectangle, (except that for a diagram containing no 
rectangles the contribution of one of the lines is just 
'1); 

(4) Integration over all momentum labels is required. 
Property (A13) of the To matrices permits the complex 
integrals to be replaced by real integrals. 

The diagrams in Fig. 3 give 

n =± 2-S / 2;\-s _ '1-~rdpldp21°oax e-II" 1m {JpIP21 To (x+) I PIP2)S~ 
2 J l2iTJ6 7T \ (x+ - E - E )2 7 . 

-00 PI P2 

(3.12) 

In Fig. 4 we present the diagrams for ns which con
tain three or fewer To-insertions. The number to the 
left of a diagram is the number of diagrams which can 
be shown by simple symmetry arguments to be equiva
lent to it. Each diagram is labeled by a number appear
ing above it, and the corresponding contributions to ns 
are given by 

n(l) =f~e-3IIEA s (27T)3 Y, (3.13a) 
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(3. 13b) 

(3.13c) 

(3.13d) 

(3.13e) 

(3.13f) 

These results can be simplified by using the To matrix 
properties (A15) for momentum conservation and (A14) 
for the derivative. Furthermore, it can be shown that 
the results (3.13a) to (3.13e) can be expressed in terms 
of 

"E1(p, x+) = 0-1 f (::;s e-llE;(pp' I To(X+ + E;) I pp') 8' 

(3.14) 

which is precisely the self-energy "E 1 derived by the 
Green function analysis of Sec. 2. It can be seen that 
(3 .13f) as well as the contributions from all of the dia
grams for ns which are not included in Fig. 4 cannot be 
written in terms of "E 1 (note that "El involves the diagonal 
To matrix). The results for (3.13a) to (3.13e) are 
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This will be our selected diagram approximation to ns' 

4. COMPARISON OF THE TWO METHODS 

In Secs. 2 and 3 we have developed two approximations 
for the density coefficient ns which is needed to compute 
the third virial coefficient. We now demonstrate that 
these two results, (2.29) and (3.15), are identical. 

U sing integration by parts, 15 (3.15) becomes 

(4.1) 

According to Appendix B the second term on the right 
can be written as 

","3fj f(2~ae-~EpReL,1(p,Ep)±31 (:;)3e-IlEp 

(4,2) 

and, if each of the four terms in (2, 29) which involve 
L,1 to first order is expanded in similar fashion, it can 
be seen that the sum of these terms is the same. 

Similarly, we compare the third term on the right of 
(4,1) and the sum of the four terms in (2.29) which con
tain L,1 to second order. The difference between these 
quantities is 

Using Appendix B one can show that (4.3) is equal to 

1 dp ["'dx[ -Il" ~ ( +)R (~1(P'X+») f3 (21T)3 _'" --:; e 1m"1 p, x e (x+ - EJY 
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(4.4) 

this equals zero because the final integral does. This 
can be demonstrated by considering 

Ir dwE1(p, w)(w - X)-1(W _Ep )-2 (4.5) 

where the contour r is desc ribed in Fig. 1. Since x and 
Ep are real and since ~1 (p, w) is analytic in any region 
not including the real axis this integral must equal 
zero. Since 1~1(P,w)1 is bounded as Iwl- co, (4.5) must 
also equal the last integral in (4.4). This completes the 
proof that n~SD> =n~GF). 

5. DISCUSSION 

It has been established that the particular selection 
of diagrams made in Sec. 3 gives the same formula for 
na as the T approximation of Green function theory. The 
interaction enters this formula via the self-energy func
tion ~1 only; thus, the T approximation must correspond 
to the set of diagrams in which the To matrices are 
diagonal or are reducible to diagonal form by means of 
(A14). This requirement is satisfied by all diagrams 
having two or fewer To-insertions but by no diagrams 
with four or more. Of the diagrams having three To
insertions (see Fig. 4), certain ones are admitted and 
the others are excluded. The favored diagrams (10), 
(14), (18), and (21) share the property that the line 
labeled 3 enters and leaves the same insertion: this sug
gests that particles 1 and 2 form a highly correlated 
pair. These diagrams can be interpreted as represent
ing the three successive events: a scattering between a 
pair of particles, a scattering between one particle of 
the pair and a third particle, and a scattering involving 
the original pair. The rejected diagrams do not possess 
this feature. 

Having confirmed that the two approximations pre
sented in this paper give the same result for ns' we 
think that the formula, thus obtained, deserves further 
consideration. The result can be expressed in the form 

n "'3-3/2A-3'f3Ilf~e-2BEpReL, (p E) 
3 I-' (21T)S 1 , I> 

x,ImL, 1 (p, x+)Re(x+ - E/»-1 

+ i f32 /(:;)3 e-BEpRe[~1 (p, E;)]2 

- if3 f (:;)S e-
IlE

I> a~1> Re[~1 (p, e;)]2 

+3f3 f(2~31:~ e-
Il
XHeL,1(p, x), 

x 1mL,1 (p, x+)Re(x+ - EI»-2, (5.1) 
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The last two terms in this formula can be combined by 
using the fact that 

i OOdxlm([2:1(P,X+)]2) -0- (5.2) 
_00 (X+_Ep)2 -, 

this result can be obtained by an argument similar to 
that used to show that (4.5) equals zero. Thus, the sum 
of the last two terms in (5.1) is equal to 

3{3 (::)S f:~ (e-Bx - e-BEp)Re2: 1 (p, x)lm2: 1 (p,x+)Re(x+ - Ep)-2. 

(5.3) 

To see how ns depends on the To matrices we must 
use (3.14) which gives ~ 1 in terms of To and then per
form the x integration by using expression (A21) for 
1m To; the reduced To matrix elements (A15) are intro
duced, and the center-of-mass momentum integration 
may be performed. Thus, we obtain 

ns =3-S/2A-S'F ~~;S! I(::)s e-4Ilp2/Sm Re(p 1 To(p2/m) Ip) .. 

x e-B/l2/sme-Bli2/m(pl To (k2/ m+) I k)(kl To(~/m-)I p) .. 
, k2/m _p2/m 

xRe(pl To(p2/ m + rim -k2/m) Ip)s 

x (k 1 T o(l2/m+) 11)(11 To (l2/ m-) 1 k)s 

-~L;fdpdk e-(4Il/sml(p2+/i2+p.tl(e-B(eB-Ii2/ml_1) 
31/2 B (27T)6 

XRe(p 1 To(p2/ m + €B - k2/m) 1 p) .. (kl B)(B Ik)s' (5.4) 

where the bound states I B) and energies €B are defined 
by (A17) and Ip)s= Iph I -p). To use this formula the 
two-particle problem must be solved to obtain the bound 
state energies and wave functions and the To matrices 
[on- and half-on-shell To matrices will suffice except 
for the last two terms in (5.4)]. For low temperatures 
the leading contribution is the fifth term which involves 
forward (and backward for exchange) scattering ampli
tudes only. 
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The exact result for n2 can be obtained from either 
(2.28) or (3.12) and written in a form analogous to the 
above expression for ns. 16 For reference we give it 
here: 

+ 2S/2A-sL;e-BeB - 2S/2A-sL;f~e-Bp2/m(pl B)(B Ip) . 
B B (27T)S s 

(5.5) 

Our result for the third virial coefficient is obtained 
by combining (5.4) and (5.5) according to 

(5.6) 

Certain parts of our results have been derived pre
viously by other authors. Reiners obtained part of the 
first order in ~1 contribution to ns, namely, the second 
term in our Eq. (3.15) [his method was analogous to 
ours of Sec. 3, but he did not use the formula (A14) for 
the derivative of the To matrix]; his other terms involve 
three-particle T matrices. Baumgartl6 obtained the 
third term in our Eq. (3.15); he concentrated on terms 
of second and third order in Re T. Dashen and Ma,7 in 
their Eq. (4.23), have obtained the fourth and fifth terms 
in our result (5.1); they did not attempt to classify the 
various contributions to Bs systematically. 

We believe the value of our result for Bs to lie in its 
generality (as regards the two-particle interaction and 
statistical and bound states effects), its relative sim
licity [as displayed by equation (4.1)], and the fact that 
it combines the Green function and multiple-scattering 
theory. 

APPENDIX A 

Here we present the pertinent details concerning the 
generalized T matrix as well as some properties of the 
familiar To matrix. The generalized T matrix is defined 
by 

(PIP21 T(w) Ik1ka) = (P1P21 Vlk1ka) 

(A1) 

where wv =i27T{3-11l+2J.L (11=0, ±1, ±2,···), and 

Q(1112,w)=-{3-1L;G(11,wn)G(12'wv-w), (A2) 
n n 

and wn has either Bose or Fermi character as required. 

If it is assumed that both T and Q have activity 
expansions, 

T=To+T1z···, 

Q = Q(Ol + Q(l) z + ••• , 

it follows that 

(A3) 

(A4) 
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To= V+ ToQ(OIV, 

Tl = T1Q(OIV + ToQ(llV 

= T1Q(OIV+ ToQ(llTo - ToQ(lIToQ(OIV 

= ToQ(l) To. 

The summation in (A2) can be performed by 
considering 

J". dw S(w)G(ll' w)G(la, Wv - w), 

(A5) 

(A6) 

where the contour y consists of a large circle with 
branch cuts along the lines w = x and w = - x + Wv where 
v¢O. Thus, 

Q(llla, wv ) ='F ("'dx ReS (x+)ImG (11 , x+)G(la, Wv - x) J- 7T 

Noting that S(wv -x)='F (1 'F ze-S,,)-l we can compute 

(A7) 

Q(O) (lila. w) = (wv - Ef - E, )-1, (AS) 
1 2 

(A9) 

Combination of these results with (A5) and (A6) gives 
(when w is not purely real), 

(PIPal To(w)lk1ka) 

= (PlPaI Vlk1ka) +/ dhdb (Plp21 To(w)lM2)(lt121 Vlktka) 
(27T)6 w-E, -E, 

1 2 

(AI 0) 

which is the familiar definition of the standard T matrix, 
and 

xl'" dxl(w _ ,_ E )-1 Im~l{lz' X'+) ) 
X, ('+E)a' 

.00 7T 1 X - '2 

(All) 

Certain special properties of To are used in this 
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paper. If it is assumed that V is invariant under the 
product of parity and time reversal, then (PlPlll Vlklka) 
= (k1ka I VI PtP2) implies 

(PIP21 To(w) Iklka) = (klkal TO{W>!PlP2)' (AI 2) 

By definition (1.5) it follows that (To (wrr= To{w*), and 
this implies 

(PIP21 To{x+) Iklka)* = (PlP21 To(x-) Ik1ka). (AI 3) 

A formula for the derivative is provided by6 

0: (PlP21 To(w) Iklka) 

__ fdlldl2 (PIPl!1 To(w)1111z)(lllal To(w) I k1k2) 

- (27T)6 (w -E, -E, )2 , 
1 .2 

(A14) 

which follows immediately from the definition (1.5). 

The center-of-mass momentum may be separated 
from these matrix elements according to 

(PIP21 To(w) Ik1ka) = (27T)315{Pl + P2 - kl - ka)(p I To( P, w)' k), 

(A15) 

where P=Pl +P2' P= (Pl -P2)/2, and k= (k1 - ~)/2. If 
w = p2 /4m + ;, where ; is independent of P, then 
(p I To ( P, w) I k) is independent of P. In particular, if w 
=p2/4m +p2/m±ie and k2=p2 we write (pi To(p2/m t)lk) 
which is an on-shell T matrix; if w=p2/4m+p2/m±ie 
or w=p2/4m+k2/m±ie, but k 2¢p2, then (pi To(pll/ 
m"')lk) or (pi To(k2/m*)lk) are half-on-shell T 
matrices. 

An alternative expression for To is 

To(w) = V + V(w _H(21)-lV. (Al6) 

By denoting the eigenstates and eigenvalues of H(Z) by 
I a) and ea , we obtain 

Im(P1Pa I To(X"') Ik1ka) = -1T.60(X - ea )(PIP21 vi a}(a I Vlk1ka). 
a 

(A17) 

The two-particle Hamiltonian may possess a contin
uous eigenvalue spectrum with eigenstates I a'} and a 
discrete spectrum with eigenstates I aB)' Thus, we 
write 

Hl21 I a /} = (pll/4m + p,2/m ) I p) Ip/), 

H(21 laB) = (pll/4m +eB ) Ip) IB). 

(AI 8) 

(A19) 

Under the assumption that the continuous spectrum of 
H(21 and the complete spectrum of H~21 are identical, 
we obtain17 

Via') = To(pll/4m +pl2/m +) Ip) Ip'). (A20) 

Then (AI 5 ) becomes18 
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- 1T65(x - p2/4m -EB)(EB -tNm)(EB - k2/m)(p I B)(B Ik), 
B 

(A21) 

the first term corresponding to the right-hand cut with 
branch point at p2/4m and the second to the bound-state 
poles. 

APPENDIXB 

The meaning of certain integrals which appear fre
quently in this paper are given here: 

f_: dxF(x)Im(x+ - a)-n = - 1TF(n-1) (a)/ (n -I)! , 

n= 1, 2, ... , (Bl) 

n=l, 3, ,'0, 

P. v. r:. dx[F(x) - F(a) J(x - a)-n, 

n=2,4, DO., 

(B2) 

where P. V. denotes the principal value of the integral 
at a. Certain integrals appearing in Sec. 2 and Appendix 
A are given here: 

1 

P. V. f_: dxF(x)(z-1tt% _1)-1 (bosons), 

1.: dxF(x)ReS(X+) = (B3) 

1.: dxF(x)(Z-1eB% + 1)-1 (fermions), 

f': dxF(x)ReS(x+ - w,,) = ± P. V. 1.: dxF(x)(Z-2eBl< _1)-1, 

(B4) 
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where P. V. means principal value at J.I. in (B3) and at 
2J.1. in (B4). 
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The concept of "strength" of a system of field equations was introduced by Einstein, and is of such 
generality that one can compare vastly different systems of field equations. We review here this 
concept in arbitrary number of dimensions and apply it to some of the well-known equations of 
physics. We calculate the strength, in arbitrary dimensions, of massless Klein-Gordon equations, 
Maxwell equations (in both potential and field formulation), and Einstein equations. We also 
determine the strength of massless Dirac equation and Weyl's neutrino equation for the case of four 
dimensions. It turns out that the strength for all these equations is identical for space-time 
dimensionality of four. Other possible applications of this concept are indicated. 

Einstein in the formulation of his unified field theory 
was faced with the problem of shOwing that the system 
of field equations he had developed was rich enough (in 
number of solutions) to describe a variety of situations 
in electromagnetic and gravitational theories without 
being too vague. The first such attempt he made was 
when he published his "Generalized Theory of Gravita
tion" as Appendix II to his Princeton Lectures on 
Relativity. 1 The unsatisfactory nature of Einstein's 
analYSis was pointed out to him by E. Strauss, and 
Einstein therefore gave a revised discussion in the fifth 
edition of his book. 2 In a further edition3 published by 
Princeton University Press (1953), Einstein completely 
revised his approach and introduced the concept of 
"strength·· of a system of field equations. Here he ob
tains the result that potential and field formulations of 
Maxwell equations have different strengths4 for the 
dimension four. He apparently realized the paradoxical 
nature of this result. Consequently, in the following 
(and the last revised) editionS of this book he rewrote 
this portion completely and presented the concept of 
strength in a very neat and concise form. The potential 
formulation of Maxwell's equations is, however, not 
discussed here. Lucid as Einstein's discussion has 
been, one would expect a plethora of papers applying 
this concept to other problems in phYSics. Actually, 
there is only one such discussion in the literature6 

generalizing Einstein's discussion to an arbitrary num
ber of dimensions d (Einstein had confined himself to 
the case of four dimensions). Unfortunately, however, 
this paper contains errors which give a completely 
wrong picture, of the method of approach. Considering 
also some of the new applications that we have in mind 
we give here a complete review of this method and apply 
it to some well known massless wave equations. Plan 
of the paper is the following. We first consider simple 
cases in lower dimenSions to give credibility to the 
terms we introduce and thus arrive at a heuristic defini
tion of the concept of strength of a system of field equa
tions. Next we consider some of the well-known equa
tions of physics in arbitrary number of dimenSions. 

If we have the first order differential equation 

(a~ + :t) cp(x,t) ==0, 

we know its solutions have the form cp(x, t) == F(x + t); for 
the second order equation 
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the solutions are somewhat more general of the type 
cp(x, t) ==F1(x +t) + F 2(x - t). We say that the first system 

determines the solutions more strongly than the second 
system. This statement generalizes to the d-dimensional 
analogs of these equations (a ... == a/ax ... ): 

(1) 

d-l .fd (a~ - a~)cp(Xl> x2 , ••• ,xd ) == O. (2) 

We are interested in obtaining a numerical charac
terization of the concept of "strength" that would enable 
us to compare different systems of equations as in the 
above examples. Suppose we have an analytic field func
tion of d variable. We can expand it in Taylor series 
and the totality of its coefficients describe the field 
completely. Let us consider the terms of the nth order 
of differentiation in the Taylor expansion; these are of 
the form 

a"'
1 
a"2'" a ... ncp, JJ.J==1, 2, "', d 

and the total number of such coefficients is 

[ dJ= (d +n -1)1 fd +nn -1). 
n (d -l)!N! \ 

If the function satisfies some field equations or con
straints, these give several relations between the nth 
order coefficients, thereby reducing the number of 
coefficients left free to be assigned arbitrary values. 
If we denote the number of coefficients thus left free by 
Zn' then it is clear that from our viewpoint the quantity 
of importance is the fraction of the total number of nth 
order coefficients left free, i. e., Zn/[! 1. For instance, 
if the field equation satisfied by our function is (1), then 
(n -l)-fold differentiation of it gives [!-11 relations 

d 

~a a a .. ·a cp==o 
1'=1 ... 1'1. .... 2 "n-1 

between the nth order coefficients. In particular for 
d == 2, these relations are 

acp _ -acp a2 cp _ ~_ ~, 
at - ax' at2 - axat - ax 2 etc., 

and when substituted back into the Taylor series yield 
the solutions 
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ct>(x,t)=ct>(xo,to) + act> I (x-i) + ... =F(x-t). 
ax ° 

The number of nth order coefficients remaining free are 

Z~l) =[~J-[~ _lJ=[~J{l-(l- d; 1f} 
If on the other hand the field equation is Eq. (2), then 
the relations between the nth order coefficients are ob
tained by (n - 2)-fold differentiation of (2); these are [n~2] 
in number, and therefore 

Z~2) = [~J(l- (d +n ~~)(~ ~n - 2J 
In order to compare these, it is clear that we must ex
pand these for large n, in powers of lin, otherwise the 
result would strongly depend on n; such expansion to the 
first order in lin is 

Z~~~.e ",[~](o + d : 1), (la) 

Z(2) Jdl(0+2~)' 
"large LnJ\' n 

(2a) 

Since there is only one field variable involved in our 
analysis, the vanishing of the first (constant) term in
dicates that no function of d variables (xu x2 , ••• , x d), 

which satisfies the field equations is left free (i. e. , 
without restriction). Therefore, this term, in general, 
gives the number of functions of d variables left free. 
The comparison of the coefficients of lin shows that 
this coefficient for the system (2) is twice as large as 
for the system (1); since the system (2) is known to be 
weaker (as we saw from the explicit example in the two 
dimensional case) we conclude that this coefficient gives 
a measure of "strength" of the system: the larger this 
coefficient, the weaker is the system. 

Now let us indicate a procedure for determining 
strength of a general system of field equations in arbi
trary dimensions. Let the number of field variables be 
k; then, the number of nth-order coefficients are 

Nn=k[~J 
Frequently equations arise which are not homogeneous 
in the order of differentiation (i. e., the field equations 
contain derivatives of different orders of a given vari
able). In that case one must conSider these derivatives 
as independent variables together with the subsidiary 
conditions relating them. In the general case, therefore, 
one has several field variables kl' ka'" (k = 'L.Jk j ) satis
fying field equations of orders r l , ra, ••. together with p 
= 'L.aPa identities, each of order ia' These various num
bers k, r, i, P can be expressed in terms of dimension 
d. Thus the number of conditions Mn (due to the field 
equations together with the constraints) on the nth order 
coefficients has the form 

Mn(k j , r.;Pa , ia; d) =Mn(d). 

The number of nth order coefficients remaining free is 
then given by 

Zn=Nn -Mn = [~J{k -M/[~J}' 
If we expand the expression in the parenthesis for large 
n making use of the expansion formulas 
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(3) 

we get 

[dJ( ZI Zz ) Z = Z +-+-+ .... 
n nOn n2 

It is clear that Zn is always .. 0 for all n, for an abso
lutely compatible system. The constant Zo gives the 
number of functions of d variables (xu x 2 ' •• xd ) left free; 
it is clearly desirable that this number be zero for any 
phYSically reasonable system. The coefficient of lin, 
Zu is of special interest and gives measure of strength 
of the system of field equations under consideration. 

Larger the value of ZH weaker is the system. We call 
ZI' the coefficient of freedom. We now proceed to illus
trate the calculation of "strength" for some of the well
known field equations. 

MAXWELL EQUATIONS IN TERMS OF FIELD 
STRENGTHS 

Field strengths of the electromagnetic field are given 
as components of an anti symmetric tensor of the second 
rank, which we denote by F",v' Since the number of com
ponents of an antisymmetric tensor of the kth rank is 
(g), the number of nth order coeffiCients in the expansion 
of F",v is 

The field equations in the absence of sources, are 

(4) 

(5) 

(6) 

Both these are of the first order. Since h"'"(f is a com
pletely antisymmetric tensor of the third rank it repre
sents (g) conditions, whereas the Eqs. (5) are d in num
ber. The number of conditions on the nth order coeffi
cients that the field equations impose therefore are 

(7) 

and may be obtained by (n -l)-fold differentiation of the 
field equations. These are to be subtracted from (4). 
All these conditions are not independent because of the 
existence of identities. One such identity is 

which holds in virtue of the antisymmetry of F",", 
gives 

[~-2J 

(8) 

and 

(9) 

relations between the conditions (on nth order coeffi
cients) due to the field equations and are to be subtracted 
from them [Le., from Eq. (7)]. If we were working in 
3 -dimensions these equations are all we need as h", "" 
represents just one independent component. For d" 4, 
the cyclic divergence of h",va 

(10) 

also vanishes, on account of which not all the conditions 
(6) are independent. Equations (10) furnish 
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(11) 

relations to be subtracted from (7). For d~ 5 not all the 
relations (10) are independent as the cyclic divergence of 
J"va~ also vanishes, so that we get 

relations to be substracted from (11). Enumerating this 
telescopic series of identities we get for an arbitrary 
dimension k =d, the total number of 

[d ] d=k(d) [d J n-2 +~2+r(-1)r n-r (12) 

relations between the conditions on the nth order coeffi
cients due to field equations, and are to be subtracted 
from (7) to obtain the number of independent conditions 
on the nth order coefficients. Collecting terms (Eqs. 
4, 7 and 12) we obtain 

z.=(~)[~] -{[d +(~)][~ -1]~[~ -2] 
- ~ (-lV(2 !r)[n ~r]}- (13) 

If we expand this for large n, we get on using formula 
(3) and rearranging terms 

Since 

and the latter vanishes for d"" h, we finally get 

zo=O, zl=2(d-1)(d-2). (-1"4) 

This result agrees with that of Einstein5 for d=4, but 
does not agree with the work of Penney. 6,7 We now turn 
to discuss the potential formulation. 

MAXWELL EQUATIONS IN TERMS OF POTENTIALS 

In terms of the potentials A", the field equations of 
Maxwell take the form 

(15) 

The number of components of A" is d, and the number 
of nth order coefficients in its expansion is d(~. 

Actually, only a part of these nth order coefficients 
serve to characterize essentially different potentials 
due to the freedom of the gauge: 

A"-A'''=A'' +a"cp, 
where cp is an arbitrary (but differentiable, etc. !) func
tion of x". The A" and A'" represent in fact the same 
electromagnetic potentials. If the above equation is 
differentiated n times with respect to x, one notices 
that all the (n + l)th derivatives of the function cp with 
respect to x enter into the nth order coefficients of the 
expansion of A'''; i.e., there appear (in the nth order 
terms of differentiation) [~+ll numbers that have no part 
in the characterization of the potentials. Therefore, in 
any theory involving this type of freedom of the gauge, 
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one must sub~act this number from the total number of 
nth order coefficients to take account of the gauge in
variance. 8 Thus, the "relevant., coefficients of the nth 
order are only 

in number. 

The number of conditions on these nth order coeffi
cients due to the fields equations are d[~_21. Between 
them there are [~-31 relations, due to the 3rd order 
identity 

(16) 

so that the number of independent conditions on the nth 
order coeffiCients are d[~_21- [~-31. Collecting terms, 
we get for the number of nth order coefficients remain
ing free 

Z.=d[~]-[~+1]-d[~_2] +[n-~l 
On expanding for large n we obtain 

zo=O, zl=2(d-1)(d-2) (17) 

in complete agreement with the strength as obtained for 
the "field strength., formulation. 

In obtaining the value of the "strength., in the above, 
we have made no use of any gauge condition, as it is 
only an unnecessary complicating factor and does not 
add anything to the clarity of the discussion. For in
stance, if we introduce the Lorentz condition as a gauge 
condition, the system of equations we get are 

V" =avavA" =0, a"A" =0, 
and the identity 

a"V"=o. 

(18) 

(19) 

Comparing it with the system (15,16) we see that the 
second of the Eqs. (18)-the Lorentz condition-is an 
additional field equation, so that the number of indepen
dent conditions on the nth order coefficients is increased 
by [~-ll (since this equation is of the first order). On the 
other hand, because of the Lorentz condition there is 
a reduction in the arbitrariness of the potentialS as the 
function cp is now no longer completely arbitrary but has 
to satisfy the field equation 

o2cp=a,,(a"cp)=0. 

Since this is of the second order, the number of terms 
that appear in the nth order of differentiation of A Il but 
play no part in characterization of the potentials is 
reduced by [~+1-21. Therefore, the number of "relevant" 
coefficients of nth order are 

In the final analysis there is no net change in the ex
pression for Z. and hence also in the values of Zo and Zl. 

The value of the strength is thus a gauge invariant 
quantity as it should be. 8 It is, however, important to 
note that from a group theoretical viewpoint the system 
(18,19) is not "equivalent" to the system (15,16) as the 
latter system is invariant under the pseudogroup of 
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conformal coordinate changes,9 whereas the former 
does not possess this symmetry. 

EINSTEIN EQUATIONS OF GENERAL RELATIVITY 

The field equations for the source-free gravitational 
field are 

(20) 

where R ik are components of the symmetric Ricci tensor 
which is obtained as a contraction of the Riemann 
tensor, 

R~jk = rZ, r:k - r:, rZk + a ,r~k - akr~" 

where r's are the Christoffel affinities. We notice that 
the Riemann tensor contains terms in both zeroth and 
first order of differentiation in the affinities. Because 
of the various symmetries (which we need not go into 
here), the Riemann tensor has only rrd2(d 2 -1) indepen
dent components. In addition, it satisfies two differen
tial identities10 known after Bianchi and Veblen; both 
these identities are of the first order of differentiation 
in the Riemann tensor and reduce for the contracted 
tensor to the set of d equations (Einstein identity) 

(21) 

At this point we notice that in addition to the affinities, 
there enter the field equations and the identities, the 
components of the metric tensor. In fact, metric tensor 
is essential for raising and lowering indices and for 
contraction. The property of the metric tensor that 
makes it so useful is the differential condition 

(22) 
One may consider this condition as a field equation for 
the g,..v; it may be considered as an equation giving the 
affinities in terms of the first order derivatives of the 
metric tensor components. On account of this the affini
ties are to be considered as of the first order of differ
entiation and field equations as of the second order of 
differentiation. The Einstein identity (21) is then of the 
third order of differentiation. It is, further more, clear 
that g's and r's are to be conSidered as independent 
variables, since the field equations are not homogeneous 
in the order of differentiation (they are nonlinear). 

Since affinities are symmetric with respect to the 
interchange of two of its indices, there are td2(d + 1) 
independent components. The metric tensor has on 
account of its symmetry td(d + 1) components. There
fore, the total number of nth order terms in the expan
sion of the fields g and r is 

}d(d +1{~J+} d2(d +1{~ -lJ, 
where we have taken account of the fact that r are to be 
taken as of the first order of differentiation. Because 
of the general covariance of the theory, a situation 
analogous to that of Maxwell's equations in potential 
formulation arises here. In that case, all potentials 
differing only in "gauge" (i. e., connected by transfor
mations of the gauge group) were considered equivalent, 
as the field equations were unaffected under transfor
mations of the gauge group. In the present case, general 
covariance means that field equations are invariant 
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under the groupoid of coordinate transformations. This 
means that if gjj(X) are representatives of the compo
nents of the metric tensor then so are all the other 
representatives related to glj(x) by a coordinate 
transformation 

so that g and g' are to be considered as equivalent. If 
we make a Taylor series expansion of g', it's nth order 
terms would contain (n + 1)-th order derivatives of the 
d-functions Xi, which have therefore no role in charac
terization of the field. Thus, from the number of nth 
order coefficients of gij one must subtract d[~+I]' Let 
us now consider the number of relations between the 
nth-order coefficients due to the field equations. First 
of the field equations (20) are td(d + 1) in number and 
are of the second order. These therefore furnish 
td(d + 1) (~-2] relations between the nth order coeffi
cients. The second set of equations (22) Similarly gives 
td2(d + 1) [~-1] relations. All of these relations are not 
independent; between these there are d[~_3] identities 
due to the d Einstein identities (21) of the third order. 
Collecting terms we get for the number of nth order 
terms remaining free: 

Z. =(~)[~J+d(~)[~ -IJ -d[~ + IJ -{(~)[~ -2J 

+d(~)[~_IJ-d[~_3J}' (23) 

In this expression we see that the terms arising from 
conSidering r's as independent variables cancel the 
terms arising from the field equations (22). It is tempt
ing therefore to altogether disregard the role of the r's 
and consequently ignore also the field equations (22). 
In fact Penney, who obtains the same result as above, 
actually ignores these contributions, which however 
because of their accidental cancellation make no differ
ence in the final result. However, as outlined in detail, 
above, such enumeration is in prinCiple incorrect. 

If we expand (23) for large n, we get 

zo= 0, ZI =d(d -1)(d -3). (24) 

We note paranthetically that our conSiderations strictly 
exclude d~ 3, since for d~ 3 the field equations (20) 
imply that space is flat. 11 

WEYL'S NEUTRINO EQUATION 

Written in the form of a wave equation, the Weyl's 
free field neutrino equation is 12,13 

a 
0" V1/!= - at 1/!, (25) 

where 1/! is a two component spinor, and 0' = (c;" (12' (13) 

are the Pauli matrices12 which satisfy 

(26) 

It is important to consider explicitly the properties of 
O"S in detail for two reasons. It clarifies the status of 
this equation as a representation of the Lorentz group 
and yields the relevant identities. It enables one to 
determine the number of independent components of 1/! 
correctly. The spinor field 1/! has 2 complex components 
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and is arbitrary up to a phase factor. Because of this 
circumstance and properties of the Pauli matrices, l/! 
and C12 l/J* are to be considered as the same 
representation 

(27) 

These are two equations in two complex variables and 
imply that l/! has only two independent real variables. 
Eliminating C1 we find that the two real components must 
satisfy the second order equation 

(28) 

This equation being of the type of Eq. (2), its strength 
is given by 

(29) 

Now let us consider the massless Dirac equation13 in 
four dimensions. The field equation for the four com
ponent object (bispinor) l/! is 

(30) 

where the matrices12 {y} consist of five anticommuting 
matrices satisfying 

{y",yJ=25"v, 
such that the fifth matrix Ys, as also 10 other matrices 
including the identity, may be obtained as some products 
of the other four; these sixteen matrices form an algebra 
(Clifford algebra). 12 Because Ys anticommutes with the 
four Y" in (30), the fields l/! and their transform by Ys 
are in fact the same representation: 

(31) 

This reduces the number of independent components of 
l/! to two complex components. Also, there exists a 
matrix14 ClI such that C 1 l/!* and l/! satisfy the same equa
tion (alternately, 15 one may make appeal to the existence 
of a Majorana representation) 

(32) 

The Eqs. (31) and (32) together imply that there are 
just two real independent components which on elimina
tion of y" satisfy Eqs. (28) so that its "strength" is 
given by (29). This result is in agreement with the well
known equivalence1s

,13 of these two formulations of the 
neutrino equations. 

DISCUSSION 

In the above we have discussed and obtained the values 
of the strength of the follOwing systems of partial dif
ference equations of physical interests. Scalar wave 
equation, the Maxwell equations in the potential and 
"field strength" formulations and Einstein equations of 
general relativity, all for arbitrary dimensional space; 
Weyl neutrino equation and massless Dirac equations 
in four dimensions. We find that, as expected, the 
Maxwell equations in the potential and "field strength" 
formulation have the same strength for all dimensionali
ties. The calculation in the literature6 of the strength for 
the Maxwell equations in field formulation in arbitrary 
number of dimensions is found to be incorrect. If we 
compare the strengths for the various equations of 
physical interest we find that the space-time dimension-
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ality four stands out as a preferred dimension for which 
the strengths of the following zero mass wave equations 
are identical: complex Klein-Gordon field, Maxwell 
field, Einstein's gravitational field, neutrino field. The 
strength parameters are Zo = 0, Z1 = 12. 

ConSidering the generality of the method of comparing 
strengths of two systems of field equations we feel that 
other possible applications are indicated. For instance, 
recently there has been a great prOliferation of various 
kinds of wave equations in relativistic quantum theory. 
The absolute conditions that a set of wave equations 
should satisfy are that they pose a well-defined Cauchy 
problem16 and furnish a rich enough set of solutions so 
as to provide an integrable representation17 of the 
Lorentz group. For the latter condition to be satisfied 
the following seems essential: (a) Since action of the 
Lorentz group on various momentum hyperboloids is 
transitive, any wave equation that leads to space-like 
momenta 18 is to be a priori excluded. It is not enough to 
just exclude states with space-like momenta; (b) The 
wave equation should satisfy restrictions due to the two 
Casimir invariants. 19 The operators of the Poincare 
algebra, as also the sum of the squares of these opera
tors, should be self-adjoint on the domain defined by the 
solutions of the wave equation. (c) This domain should 
be invariant under the Lorentz group; a related require
ment is stability under a scalar perturbation. 

A situation can arise when all these conditions are 
satisfied by more than one wave equation for the same 
mass and spin. It would then be useful to have a test, in 
the absence of any other compelling physical require
ment' to enable one to single out a preferred system of 
equations. We thus see that the concept of strength of 
a system of field equations is precisely of the type nec
essary for this purpose. Considering the great generali
ty of this concept it can be applied to compare systems 
that differ both in the number of fields involved as well 
as in kind. Thus, for example, we may require that all 
physically significant zero mass equations have the same 
strength, 12. This is in fact the case for the equations 
we considered above. In a subsequent paper we plan to 
extend these considerations to other types of equations. 

lAo Einstein, Meaning of Relativity (Methuen, London, 1950), 4th ed. 
2A. Einstein, Meaning of Relativity (Methuen, London, 1951), 5th ed.; 

this was also published by Princeton U. P., Princeton, N. J., 1950, as 
its 3rd ed. 

3A. Einstein, Meaning of Relativity (Princeton U. P., Princeton, N. J., 
1953), 4th ed. This edition has no analog in the Methuen series. I am 
grateful to the referee for pointing out the existence of this work. This 
edition unfortunately is not available outside the area served directly 
by the Princeton University Press (e.g., India), where Methuen has 
the distribution rights. 

41 am indebted to the referee for this information. 
SA. Einstein, Meaning of Relativity (Methuen, London, 1956), 6th ed.; 

also Princeton U. P., Princeton, N. J., 1955, 5th ed. 
6R. Penney, J. Math. Phys. 6, 1607 (1965). The errors in this paper 

first came to my attention when the referee criticized the disparity 
between the strength for Maxwell equations in potential formulation 
as given here and that calculated by Penney for the field formulation 
of these equations. If turns out that Penney's generalization of 
Einstein's calculation of strength of Maxwell equations is valid only 
for d ~ 4. His presentation of the calculation of the strength of 
Einstein equation is also misleading and his discussion of the strength 
of Weyl and massless Dirac equation is wrong. 
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7The reason for this disagreement is that Penney has disregarded the 
additional cyclic identities that arise in higher dimensions. See also 
the discussion at the end of this paper. 

8That "strength" for the case of potential formulation has to be a gauge 
invariant quantity is already clear from Einstein's discussion of the 
case of "coordinate gauge freedom" in general relativity. In fact 
calculating the strength of any system one must take into account all 
the relevant symmetries; therein lies the value of this concept. 

9The conformal invariance of the system (15. 16) follows from the 
conformal invariance of the system (5.6). See also K. H. 
Mariwalla. Lett. Nuov. Cim. 4.295 (1972). 

10L. P. Eisenhart. Non-Riemannian Geometry (Am. Math. Soc. Coli. 
Pubis., New York. 1927). Vol. VIII. 

IIFor a (2+ 1) space-time, even though R 7 jk vanish, the space-time 
need not be globally flat. For remarks in this connection, see J. A. 
Wheeler in Relativity, Groups and Topolgy (Les Houches, Paris, 
1963), edited by C. Dewitt and B. Dewitt (Gordon and Breach, New 
York, 1964), pp. 519-20, Problem 56. 

12See, e.g., A. Ramakrishnan, Elementary Particles and Cosmic Rays 
(Pergamon, London, 1962). For a very lucid discussion of Pauli 
matrices their generalization to higher dimensions and to generalized 
Clifford algebras, see Alladi Ramakrishnan, L-Matrix Theory or 
Grammar of Dirac Matrices (Tata McGraw-Hill, Bombay, New 
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Delhi, India 1972), and J. Math. Anal. Appl. 20, 9 (1967). 
13B. Kursunoglu. Modern Quantum Theory (Freeman. London, 1962). 
14K. H. Mariwalla. Rev. Mod. Phys. 34, 215 (1962). 
ISC. Ryan and S. Okubo, Nuovo Cimento Suppl. 2, 234 (1964). 
l~e Cauchy problem for a partial differential operator 

D = oT + "i:.?'=IPr (02,03 •... ,0d)OT .r. wherepr are polynomials, is 
to determine 1/1 such that D 1/1 = op(x I, x 2 , •••• Xd) and ~ 1/I.l x ,=o 
= X/x 2' x 3' ... , x d), j = O,I, ...• m - 1, where 1jI, </>, X are functions 
of a specified type. Associated with the Cauchy initial value problem 
is an Abelian group which transforms the Cauchy data from x = 0 to 
another x. 

I'For instance in the formal Lie algebra [q, pI =;, P = i%q, if 
q = ( - 00, + (0), it integrates to a group; but that is not the case if 
the range of q is in any way restricted. See also E. Nelson, Ann. 
Math. 70, 572 (1959); M. Born and P. Jordan. Elementare 
Quantenmechanik (Berlin, 1930), p. 128. 

18For instance, the so-called Weinberg equation is unacceptable from 
this viewpoint. We note parenthetically that already from the point 
of view of conformal invariance the Weinberg equation exhibits 
anomalous behavior. See, e.g., M. FIato et al., Ann. Phys. (N.Y.) 
61, 93 (1970). 

19Not all wave equations in the literature satisfy this condition. 
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Starting from an exact recursion relation of the form A(q, N) = !.;.;A(q - i, N - j)Cij' we 
present a recursion method for calculating the various moments J.tN(m) = 1.: _ oq rnA (q, N). These 
results are applied to obtain the occupation statistics for occupation of a 2 X N array by parallel 
and not necessarily parallel dumbbells. 

INTRODUCTION 

study of the regular space lattices is useful in under
standing a variety of physical phenomenon. In particular, 
the problem of occupation of a two-dimensional lattice 
space by dumbbells appears in the theory of adsorption 
of diatomic molecules. 1 

Exact solutions for such problems are usually known 
only for the one-dimensional lattices. 2 Recently 
McQuistan et al. have attacked the problem of obtaining 
the occupation statistics for the placement of dumbbells 
on a 2 xN array, a dumbbell occupying adjacent sites. 
They have given exact recursion relations for the two 
situations-when all the dumbbells are oriented parallel 
to the long (N) dimension of the array, or are placed un
restrictedly. 3,4 The first problem is simpler, and they 
have been able to calculate the pseudovariance, using an 
exact solution of the recursion relation and some ap
proximation techniques. 

The purpose of the present paper is to show that we 
can obtain these results from the recursion relations 
and the initial conditions only without obtaining a general 
solution. This greatly increase the domain of validity of 
the method. In particular, we consider the problem of 
finding the number of arrangements of dumbbells on a 
2 XN array and the corresponding moments and occupa
tion statistics for the two situations referred to above. 

NORMALIZATION 

Let us start with a recursion relation 
I J 

A(q,N)=E E CfJA(q -i,N -j), 
faO JwI} 

(1) 

where Cfl are constants and A(q,N) are defined only for 
nonnegative values of q and N. Also A (q , N) = 0 whenever 
q>N. Define 

I 

Cj=:E Cii (2) 
hO 

and 
N 

~N=f.iA(q,N). (3) 

In this section, we determine the normalization ~N for 
our distribution. 

From (1), (2), and (3) 

Equation (4) is a recursion relation satisfied by ~N' 

Now multiply Eq. (4) by xN and sum over N from 
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(4) 

N=J to 00. This gives 

(5) 

In the above equation, we have expressed G(x), the 
generating function for ~N' as a quotient of two poly
nomials in x, with the numerator having a lesser degree 
than the denominator. Note that to compute G(x), we 
need the J initial values ~, (0", P '" J -1). 

We can, therefore, express G(x) in terms of partial 
fractions. Suppose that the roots of the equation 

" l-EC xJ=o 
JoIJ J 

are all unequal. Then Eq. (5) can be rewritten as 

i. e. , 
J 

(6) 

~N=J~ kJS:. (8) 

If 1/S=1/S1 is the root with the smallest absolute value, 
and kl =k, we have 

(9) 

where 

k= lim (1-Sx)G(x). 
S,,·1 

(10) 

Equations (9) and (10) are valid whenever the root with 
the smallest absolute value is nondegenerate. For the 
case when this root is degenerate, a modification of 
these equations can be obtained easily. We do not pre
sent this modification since our examples do not require 
it. 

HIGHER MOMENTS 

m 

c" :0 J.J.f(m)N' for large N. 
toO 

In Eqs. (11), (12), m=0,1,2, ... and 

lJ.o(m) = 0 .. 0' 

(11) 

(12) 

(13) 

Now multiply the recursion relation in Eq. (1) by q" 
and sum both sides from 0 to N to obtain 
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(14) 

In the last step, we have manipulated the q-summation 
and used Eq. (11). 

Finally we make use of Eqs. (9) and (12) to arrive at 

Comparing the coefficients of Nr on both sides, we 
obtain 

for r=O, 1,2, ... ,m. 

Out of these m + 1 equations for each m, only mare 
interesting. For when r== m, Eq. (16) simplifies to 

J 

I] CIS-1 == 1, 
JoLl 

(17) 

which is trivially satisfied since S-l is a root of Eq. (6). 
Thus we have again found that S-l satisfies a certain 
equation. However, in the last section on normalization, 
we were able to see that S-l is a root with the smallest 
absolute value. In that section, we were also able to de
termine the normalization constant k. The remaining m 
equations are linear equations in the m quantities J.Lr(m) 
(1 .:; r':; m) with coefficients depending upon the lower 
order moments J.L.(m) (s < r). Equation (16) is therefore 
the recursion scheme we were seeking. 

Remark: For r=m -1, Eq. (16) takes the form 

J J 1.1 J 
J.Lm(m)/l1-m_1(m -1)= I] l]iCflS-J I] I] jC,IS-I, 

laO loLl laO loLl 
(18) 

which shows that I1- m(m)/l1- m_1(m -1) is a constant inde
pendent of m. Since J.L0(0) = 1, we find 

where, for simplicity, we have written 

J.L1 (1) = 11-(1). 

(19) 

(20) 

Thus we can immediately determine the coefficient of 
Nm in I1-N(m). This is the content of the central limit 
theorem proved in Ref. 4. We have, however, presented 
a technique by which coefficients of other powers of N in 
the various moments, could also be determined. 

Remark: Since we will also calculate the pseduo
variance in our examples, we give the equation which 
determines 11-1(2) below. 6 

1 J vt J 
11-1 (2)= I] I]Cf}S-I[lI1-2(2) - 2ij 11-(1) + i2] I]jC,JS-I. 

laO loLl foLlloLl 
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leI dumbells in a 2 XN array, it is known that Ap(q ,N) 
satisfies the recursion relation4 

A/q,N)==Ap(q,N -1) + Ap(q -l,N -1) + Ap(q -1 ,N - 2) 

+ Ap(q - 2,N - 2) -Ap(q - 3,N - 3). (22) 

Thus, in this example, the coefficients CfJ and CJ are 

Coo==o, C10 ==0, C20 =0, C30 =0, 

COl = 1, Cll =1, C21 =0, C31 =0, 

C12 = 1, C22 = 1, C32 == 0, 

C33 = -1, 

Co:OO, C1=2, C2=2, C3= -1. 

Here J == 3, and the initial values of 11 N are 

110 = 1, 111 = 1, ~ = 4. 

Thus 

G(x) = (1-x)/(1-2x - 2~ +x3) 

i. e. , 

k = (3 + ,(5)j10 and S = (3 + 15)/2. 

Also 

J.L(1) = (S2 + 3S - 3)/(2S2 + 4S - 3)== 1 -1/15 

and 

J.L2(2) = (1 _1/15)2. 

Finally 

J.L1 (2)== [11-2(2)(2~ + 8S - 9) - 211-(1)(S2 + 6S - 9) 

+ (S2 + 5S - 9)]I(2S2 + 4S - 3), 

=2/515. 

Occupation of 2 X N array by dumbbells 
(not necessarily paraflel) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

If A (q ,N) is the number of possible arrangements of 
q dumbbells, the recursion relation is3 

A(q,N)=A(q ,N -1) + 2A(q -1 ,N -1) +A(q -1 ,N - 2) 

-A(q -3, N-3). 

Thus the coefficients C Ii' CJ in this example are 

COO=o, ClO=O, C20 =0, C30 =0, 

COl = 1, ell =2, C21 =0, Cn = 0, 

C12 = 1, C22 =0, C32 =0, 

C23 =0, C33 = -1, 

Co=O, C1=3, C2=1, C3= -1. 

The initial values of I1N are 

(29) 

(21) 110 = 1, 111 = 2, ~ = 7, 

EXAMPLES 
Occupation of 2 X N array by parallel 
dumbbells 

If Ap(q, N) is the number of ways of arranging q paral-
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and J=3. 

Thus 

G(x)= (1-x)/(1-3x-x2 +x3) (30) 
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or 

AN 0<0.655 (3. 214)N, 

i. e. , 

S=3.214, k=0.655. 

Here 

and 

J..L(1) = (~+S - 3)/(2S2 + 2S - 3) "'0.606, 

J..L2(2) = 0. 367, 

J..Ll (2)= [/-Lz(2)(3S2 + 4S - 9) - 2 J..L(1 )(282 + 2S - 9) 

+ (2SZ +8 _9)]/(3S2 + 28 - 3) 

"'0.155. 

CONCLUSION 

(31) 

(32) 

(33) 

(34) 

(35) 

Starting from a recursion relation, we have presented 
a technique for calculating higher moments and have il
lustrated our method by two examples. For the first 
example, alternate method based on explicit solution of 
the recursion relation is also available, though the cal
culation of moments higher than the second will become 
formidable. The second problem is such where the solu
tion to the recursion relation is not known so far. We 
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have been able to demonstrate the usefulness of our 
method by explicitly calculating the moment J..Ll (2) which 
is related to the pseudovariance by 0'2= J..Ll(2}N. From 
the results that we have given, we can express the oc
cupation numbers A(q,N) as 

A(q,N) "'[AN/.J21TJ..Ll(2)N] 

II. K. Roberts, Proc. R. Soc. Lond. A 161,141 (1937). 
2R. B. McQuistan, I. Math. Phys. 10,2205 (1969). 

(36) 

3R. B. McQuistan and S. I. Lichtman, I. Math. Phys. 11, 3095 (1970). 
4R. B. McQuistan, S. I. Lichtman, and L. P. Levine, J. Math. Phys. 

13,242 (1972). 
sThis is where we have gone beyond the work in Ref. 4. 
~e pseudovariance is dermed as ""N(2) - [""N(l)F. For large N, using 

Eq. (15), it is just #Ll(2)N. 
7In fact from Eq. (23), one immediately obtains 

liN = [3 + 1/5)/10][(3 + 1/5)/2]N 
+ [(3 -y5)/10)[(3 -y5)/2)N + (2/5)(-I)N, which for large N 
becomes [(3 + 1/5)/10][(3 + 1/5)/2]N. We can rewrite this answer as 
(1/5)[(1 + 1/5)/2]2N+2, where (1 + 1/5)/2 = 1.618 is the golden 
mean. In Appendix B of Ref. 4, this normalization is calculated using 
another argument. However, the authors have made minor errors. 
Using their notation, !.qX(q, I X 2N) is not negligible. Also 
!.qA(q, I X N) = (1/1/5){[(1 + 1/5)/2]N+l - [(I - 1/5)/2]N+l] 
and "f.qX(q, I X 2N)= ["f.qA(q,1 X(N-I»)2. These finally give the 
same answer as derived by us using the generating function method. 
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The problem of introducing a Lorentz basis in a spacelike representation of the inhomogeneous 
Lorentz group in the spinless case, is solved by the methods of integral geometry. A new description 
of the representation associated with isotropic lines, which is peculiar to the spacelike case, is also 
given. 

INTRODUCTION 

The unitary irreducible representations (urn's) of the 
inhomogeneous Lorentz group (mLG), which were con
structed by Wigner in 1939, may be analyzed from 
several different points of view. lOne pOint of view may 
be described as follows. The mLG has a semidirect 
product form, namely of the homogeneous Lorentz group 
(HLG), which is semisimple, by the four-parameter 
group of space-time translations, which is Abelian. As 
was originally done by Wigner, one can therefore set up 
the urn's in such a way that the operators correspond
ing to the space -time translations are all diagonal. In 
physical terms, the infinitesimal generators of space
time translations are the operators of energy and 
momentum, and it is sought to diagonalize simulta
neously these four operators. One then obtains the urn's 
of the mLG in a momentum basis, and can then analyze 
the various possible descriptions that can be given of the 
"spin" or helicity variable and the transformations that 
connect these descriptions. This development is very 
well known. 2 A totally different point of view from which 
to analyze the UIR's places the emphasis on the HLG 
rather than the space-time translation group; this leads 
to the urn's of the mLG in a Lorentz basis. The vectors 
of the Lorentz basis belong to definite urn's of the HLG; 
and in this basis the unitary representation of the HLG 
contained in any given urn of the IHLG is explicitly dis
played as a direct sum (integral) of urn's of the HLG. 

The nontrivial urn's of the mLG form three distinct 
families, namely those with timelike, lightlike, and 
spacelike energy momenta. (By trivial we mean those 
UIR's of the mLG in which the operators of energy and 
momentum vanish, and which are therefore just UIR's 
of the HLG). Analyses of the timelike and lightlike 
urn's according to the second point of view described 
above have been given by several authors. 3 In this con
nection it is worth remarking that it is of interest to see 
not only how a Lorentz basis may be introduced, but also 
how the energy -momentum operators act in this basis. 
The mathematical methods employed in these treatments 
would not appear to be particularly unfamiliar to an ex
perienced quantum mechanic. However the decomposi
tion of a spacelike urn of the mLG into um's of the HLG 
does not appear to be as easily achieved with these same 
methods; at any rate some characteristic new complica
tions peculiar to these urn's show up. 4 

The simplest spacelike urn of the mLG is that cor
responding to vanishing helicity; in every other space
like urn the helicity variable can assume an infinite 
number of distinct values. In this paper, we present a 
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solution to the problem of decomposing the simplest 
spacelike UIR of the mLG into UIR's of the HLG, 
making use of the methods of integral geometry devel
oped by Gel'fand et al. 5 As a matter of fact, in a sense 
to be made precise later on, the work of Gel'fand et al. 
includes the solution to exactly half of the problem that 
we shall set ourselves, and our work constitutes an ex
tension of their methods to a full solution of our problem. 

Apart from its intrinsic interest, we were led to the 
present problem because it has unexpected connections 
with the Clebsch-Gordan problem for the UIR's of the 
three-dimensional Lorentz group. This connection will 
be explained elsewhere. In the meantime, Bassetto and 
Toller arrived at the same problem during their study 
of multiperipheral models, and they too have made use 
of the methods of integral geometry to obtain a solu
tion. 6 However their solution and ours have, formally, 
quite different appearances. In particular, we have 
developed our solution in such a way that at every stage 
the speCialization needed to recover the formulas of 
Gel'fand et al. is completely obvious. Such is not the 
case with the final formula of Bassetto and Toller. In 
addition, we have given a more detailed description of 
the representation of the HLG associated with isotropic 
lines. 

The material of this paper is arranged as follows. 
Section 1 contains a statement of the problem we are 
interested in, and a resume of the material from Ref. 5 
that is relevant here. This resume has been included 
because the methods used may be unfamiliar to a physi
cist' and because we will just be extending the work of 
Ref. 5. In Sec. 2 we give the derivation of the general
ized inversion formula which is at the basis of the 
present method of reduction of group representations. 
Section 3 contains an analYSis of the representation of 
the HLG on isotropic lines using essentially the ap
proach of Ref. 5; while in Sec. 4 we relate this repre
sentation to another one obtained by the group expan
sion method from a representation of the Euclidean 
group E(3). In the concluding Sec. 5 we have given a 
clear statement of our results, and suggested some in
teresting questions worth pursuing. 

I. STATEMENT OF THE PROBLEM, RESUME 
OF KNOWN RESULTS 

A general element of the IHLG may be denoted by 
(A, a"), and is made up of a proper orthochronous 
homogeneous Lorentz transformation A and a space
time translation a". 7 The 4X4 real matrix "A" vi' cor
responding to A obeys 
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(1.1) 

in addition to the conditions imposed by being a proper 
orthochronous transformation; while the components alJ. 
are four arbitrary real numbers. The action of the 
rnLG on the space-time coordinates xlJ., and the group 
composition law for the rnLG, are summarized by 

(A, alJ.) : xlJ. _ AIJ. .,xl' + alJ.; 

(A 'IJ. v' a'IJ.)(AIJ. v' a IJ.) = (A'IJ. /l a v' a'lJ. + A 'IJ. .,aa). 

(1.2) 

In a UIR of the rnLG, the generators of homogeneous 
Lorentz transformations, JIJ.V and of translations, PIJ. 
are both Hermitian and obey the following commutation 
rules: 

- i[JlJ.v' J~p] =gv~JlJ.p - glJ.~Jvp + gvpJ~1J. - glJ.pJ~v' 

- i[J IJ.V' pJ = gv~PIJ. - g IJ.~P.,' 
[PIJ.,p~]=o. (1. 3) 

The set of six operators JIJ.V can be divided into two' sub
sets of three operators each: 

(1. 4) 

J
k 

generate space rotations, comprising the group R(3), 
and the K~ give rise to pure Lorentz transformations. 

The spacelike UIR of the rnLG corresponding to 
vanishing helicity can be described thus. In momentum 
space, that is the space of the eigenvalues plJ. of the 
operators PIJ., define the spacelike hypersurface r 
(single-sheeted hyperboloid) by 

r: p2;:(pO)2 -lpI2= -1. (1. 5) 

We shall write (dP) for the Lorentz-invariant volume 
element on r. We can now set up the Hilbert space:le 
for the urn: It consists of all "wavefunctions" f( p) 
defined on r for which 

1IJ112=Jr(dp)lf(P)12;: f~;~, L:po=±wCP) it(pW<ao, 

w(p)=[lpI2-1)1/2?0, Ipl?1. (1.6) 

(In three-dimensional momentum space, p is restricted 
to the exterior of the unit sphere). In JC, the required 
UIR acts on wavefunctions f(P) in the following manner: 

(A, a) - T CA,.) : (T CA,. )f)(P) == exp(ipa)f(A -11J. vpV). 

(1. 7) 

Restricting ourselves to the subgroup of homogeneous 
Lorentz transformations, we have in JC a unitary repre
sentation of the HLG provided by the operators T A 

;: T (A 0)' Our problem is to decompose this unitary 
representation of the HLG into UIR's. 

From the manner in which the above representation 
of the HLG has been defined, we can immediately draw 
certain conclusions which restrict the UIR's of the HLG 
that can possibly occur. Recall that the (single -valued) 
urn's of the HLG can be labelled in the form {jo, p}; .10 
is a nonnegative integer or zero, and specifies the 
"smallest" representation of the subgroup R(3) that is 
present (the least value of the angular momentum), 
while p is any real number. 8 Except for the fact that 
{O, p} and {O, - p} are the same UIR, different pairs 
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tio, p} correspond to inequivalent UIR's. Two Casimir 
invariants may be formed out of the generators Jk, Kk 
of the HLG; their forms, and the values they assume in 
a UIR, are 

C 1 ==KkKk - JkJk= 1 + p2 - .10
2

, 

C2 =KkJk =pjO' (1.8) 

Now it is easily seen that the representation of the HLG 
defined in the space :Ie has the generators 

J -i1p .l...._p _0 ). 
IJ.V- ~lJ.opV VoplJ.' (1. 9) 

it is immaterial whether the restriction of p to r is 
made before or after the application of the J's to a 
functionf(p). With these expressions for JIJ.V it follows 
that 

(1. 10) 

Therefore, on comparing with Eq. (1. 8), it is clear that 
only UIR's of the HLG of the two types {O, p}, tio, O} can 
be present in:le. 

Since on the Single -sheeted hyperboloid r there is no 
Lorentz-invariant distinction between positive and nega
tive values of pO, we can define a reflection operation 
IR in this way: 

(1. 11) 

The unitary operator R commutes with the transforma
tions T A representing the HLG, but of course not with 
the space-time translations. It therefore can be used 
to split our problem into two independent parts: the 
eigenspaces :Ie. and:le_ of R, consisting of functions 
f(p), respectively, even and odd under plJ. - _plJ., are 
individually invariant under the HLG, so the two cor
responding representations of the HLG can be separate-
1y decomposed into UIR's. The problem of decomposing 
the representation appearing in:le. into irreducibles is 
precisely what has been solved in Ref. 5. We shall now 
give a brief resume of this treatment. 

Let ~ IJ. stand for a variable lightlike vector on the 
positive light cone, 1. e., fulfilling ~2 == 0, ~o > 0. With 
any given function fJ p) belonging to :Ie. we associate a 
function h.{i;) on the positive light cone according tog 

h.W == 2 J (dP)Ii(~ . P -l)f'< p). (1. 12) 

The values that a function of ~IJ. obtained in this manner 
may assume for different points on the positive light 
cone are not independent of one another; h'<~) obeys the 
linear constraints 

J (d~}h'<~)[Ii(P' ~ - t) + 1i( p. ~ + t)] 

=J (d~)h.(~)[1i(P· ~_rl)+1i(p. ~+rl)], (1. 13) 

where p is any point on r, t any positive real number, 
and (d~) == d 3 V~o the Lorentz -invariant volume element 
on the positive light cone. 10 One may now ask whether 
it is possible to recover fJp) given a function h.W 
which is known to obey Eq. (1. 13), 1. e., whether Eq. 
(1. 12) can be inverted. The answer is that this is not 
possible; in addition to h.(~) we need to know the values 
of the integrals of f. along all possible "isotropic lines" 
in r before we can obtain an inversion formula for f.(P). 
An isotropic line l is a one-parameter set of points in 
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r of the form b" + t~" with the parameter t in the range 
- co < t < co, where b" is any point on r and ~" is a 
lightlike vector such that b • ~ = 0. (Given any point on 
r, one can find isotropic lines passing through it). By 
suitable choice of t it is evident that we can arrange to 
have bO = 0, ~o = 1; we may then say that the isotropic 
line I is given in standard form. Thus, isotropic lines 
correspond one-to-one to pairs of unit vectors a, ii) in 
three-dimensional space, fulfilling ~. ii = 0. In fact the 
line determined by the pair (~, b) comprises the points 
(t, b + t~) of r. With f'(P) we now associate a function on 
the isotropic lines according to 

qJ .a, b) = 1: dtf.(t, b + t~). (1. 14) 

Once again, the values that a function qJ. obtained in 
this manner may assume for different "values" of its 
argument are not independent of one another. We have 
the set of linear constraint equations 

J dna)qJ J~, R(O:, ~)b]li( pO -p' ~) 

= J dna)qJ J~, R(17 - 0:, ~)b]B( pO -p. n. (1. 15) 

Here, dna) is the rotation-invariant integration mea
sure over the direction of the unit vector ~; p" is any 
point on r; 0: is any angle in the range 0.;: 0: .;: 17; R(o:, ~) 
denotes a right-handed rotation of amount 0: about the 
axis ~; and b is determined by ~ and P" according to 
b =p - pot Notice that for a given point p on r, and for 
each direction ~ that is then permitted by the delta func
tion in Eq. (1. 15), b is such that the isotropic line de
termined by the pair (t b) passes through p; indeed we 
have P" = (pO, b + pO~). Now it is possible to invert the 
pair of Eqs. (1. 12, 14) and express f.( p) in terms of 
h.W, qJ.(t b): 
f'(P) = - (417)-2 J (d~)h.W 
X [li"(p· ~ -1) + Ii"(p· ~ +1)] - (217)-2 J dna)li(pO _po ~) 

(1. 16) 

Ii" denotes the second derivative of the delta function 
with respect to its argument, and once again the unit 
vector b inside the integral is chosen according to 
b=p - pot 11 

The association of the pair {h.W, qJ .(~, b)} with each 
wavefunction f'(P) in JC., and the inversion formula 
(1. 16) expressing the latter in terms of the former, 
complete the first step in decomposing the representa
tion of the HLG appearing in JC. into UIR's. The action 
of Lorentz transformations on the functions f.( p) can be 
translated into suitable actions on the functions h+(~) 
and qJ .a, '6). In the case of h.W, the result is obvious. 
As for qJ.(t b): evidently a homogeneous Lorentz trans
formation A-I applied to the set of points on r constitut
ing an isotropic line I = (~, b) results in the set of points 
A-l(t, b + t~), - co < t < co, which forms another isotropic 
line, 1'=A-1 1 say. If AER(3), we get a description of 
I' in standard form by allowing A-I to act directly on ~ 
and b; otherwise a redefinition of t is needed to get such 
a description. Let us write A -l(t b) for the standard 
description of l' = A -1l. Then the change in the function 
f'(P) caused by the action of T M 

f.( p") - f.(A -Ill Y) (1. 17) 

is accompanied by the following changes in h.(~) and 
qJ.a, b): 
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h.(~Il) _h.(A-lll v~V), 

qJ .(~, b) - [Ao ° +A /~llqJ JA-l(t b)]. 

(1. 18a) 

(1. 18b) 

Thus the originally given unitary representation of the 
HLG in the space JC. has been expressed as the direct 
sum of two other representations: one acts according to 
(1. 18a) on a class of functions that are defined on the 
positive light cone and obey the constraints (1.13); the 
other acts according to (1. 18b) on a class of functions 
that are defined on the isotropic lines and obey the con
straints (1. 15). These two representations must now be 
decomposed into irreducibles, and then the original 
scalar product in JC. must be suitably reexpressed. 

The decomposition of the representation associated 
with h.W is achieved as follows: with h.W we associate 
a function of ~ and a real variable p by 

(1. 19) 

Then for fixed p, F.(~; 0) is homogeneous in ~ of degree 
-1 +ip/2: 

F+(a~; p) =a-l.iP/2F.(~; p), a> 0. (1.20) 

~o we may think of F.(~; p) as essentially a function of 
~, i. e., as a function on the unit sphere in three-space. 
It then turns out that when h.(O transforms according to 
Eq. (1. 18a) under the HLG, F.(~; p) transforms accord
ing to the urn {a, p} of this group. The equations that 
relate F.(~; p) directly to f.(P), express h.W in terms 
of F.(I;; p), and give the constraints (1.13) in terms of 
F.(I;; p) are these: 

F.(I;; 0)=2 J (dp)8(1;' p)[~. p]-l+ iP /2j"'(p) 

= J (dP) I I; . pi-I. iP/2f'(P); 

h.W = (417)-1 1: dpF.(~; p); 

J (dl;)F .(1;; p)[Ii( P • I; -1) + li( p . ~ + 1)] 

= J (d~)F.(~; - p)[li(P' ~ -1) + li( p. ~ + 1)] 

for all P, p on r. 

(1. 21a) 

(1. 21b) 

(1. 21c) 

The last equation above is compatible with the irreduci
ble transformation properties of the F.(~; p) stated above 
because {O,p} and {O, -p} are equivalent urn's of the 
HLG; it essentially says that knowledge of F.(~; p) for 
all positive p suffices to determine this function for all 
p. Making use of these equations, the first term on the 
right-hand side of the inversion formula (1. 16) can be 
written in terms of F.(~; p) for p ~ 0, and it has the form 

i(417)-3 fo~ p2dp J (d~)F.(~; p)[li(p. ~ -1) + li(p· ~ + 1)]. 

(1. 22) 

The decomposition of the representation associated 
with qJ .<~, b) is achieved as follows: With qJ.<t b) we as
sociate a function of a, b) and an even integer 2n by 

F.(t b; 2n) = for do: exp( - 2inO:)qJ J~, R(O:, ~)b], 

n=0,±1,±2,' ". (1.23) 

Then for each n, the behavior of F.(~, b; 2n) under rota
tion of b is given by 

F .<~, R(f3, ~)'6; 2n) = exp(2inf3)F.(t '6; 2n). (1. 24) 

This is the analogue to Eq. (1. 20); so if for each ~ we 
make some choice of b according to some convention, 
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we can again think of F.(t b;2n) as just dependent on t 
i. e., as a function on the unit sphere in three-space. 
It then turns out that when cp.<t b) is transformed ac
cording to Eq. (1.18b) under the HLG, F.<t b; 2n) trans
forms according to the urn {21 n I , O} of this group. The 
replacements for Eqs. (1. 21) are, respectively, 

F.a, b; 2n) = J (dp) exp[ - 2ina(t b; p) ]6(pO -p • ~)f'< p), 

(1. 25a) 

~~ 1~ ~~ 
CP.(~,b)=- L.J F,<~,b;2n), 

1T n=.oo 

J dn(~)F.(t b; 2n)6( pO - P . ~) 

= J dnWF.(t b; - 2n)6(pO -p.~) 

for all n, p on r. 

(1. 25b) 

(1. 25c) 

In the first of the three equations above, the dependence 
of a on t b, and p is to be determined from 

p - Po~ =R(a(t b; p), ~)b. (1. 26) 

Equation (1. 25c) is clearly compatible with the stated 
transformation properties of F.<t b; 2n), and it essen
tially says that this series of functions for n ~ 0 already 
determines those for n < O. Making use of these equa
tions, the second term on the right-hand side of the in
version formula (1. 16) can be written in terms of 
F.(~, b; 2n) for n> 0 (the term with n = 0 drops out!); 
adding this expression to what appears in (1. 22), we get 

f.( p) = t(41T)-3 1'" p2dp J (d~)F .(~; p)[6( p. ~ -1) 
° '" 

+ 6(p· ~ + 1)]+4lT-2?; n J dn(~)F.(t b; 2n) 

x 6( pO _p' ~), 

b =p - pot (1. 27) 

Finally, it is shown in Ref. 5 that the original expres
sion for the norm of a wave function in :Ie. takes this 
form: 

IIf.1I2= J (dp) V.(pW =t<41T)-3 10'" p2dp J dna) \F'<~; pW 

+ 41T-2ffj n J dna> \F.(t . .. ;2n) \2. 

(1. 28). 

From all of this we conclude that in the subspace :Ie. of 
:Ie the set of urn's {O, p} of the HLG appear in the form of 
a direct integral from p = 0 to p = 00, the multiplicity of 
appearance of each of these urn's being one; and in 
addition there is a discrete direct sum of the UIR's 
{2n, O} for n= 1, 2,"" each appearing once. 

In this account of the treatment given in Ref. 5 of the 
representation of the HLG appearing on :Ie., we have 
retained all those important equations for which we shall 
find parallels when analyzing the representation on :Ie_. 
As mentioned in the Introduction, our general treatment 
will be such that the equations valid for :Ie. alone will at 
all stages be completely obvious. 

II. DERIVATION OF GENERALIZED INVERSION 
IFORMULA 

We shall now obtain an inversion formula that gen
eralizes Eq. (1.16) to all functions f(P) E:Ie. Our meth
od will be an extension of that employed in Ref. 5. To 
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begin with, it is necessary to restrict ourselves to func
tions f( p) that are infinitely often differentiable and have 
compact support on r; however since these niceties are 
very well explained in Ref. 5, we will not repeatedly 
refer to them. 

Given then a functionf(p) on r, let us set up two in
dependent functions on the positive light cone by 

ha(~)=J(dp)6(1Ja~·P-l), a=1,2 

1J1 = + 1, 1J2 = - 1. (2.1) 

We will obtain a formula that gives f(P) in terms of 
~ W, h2(~) and the integrals of f along isotropic lines. 
To this end, let us form four expressions K ab( P'; 11-;f}, 
where P' is a point on rand 11- a complex variable, by 

K ab( p'; 11-;/) = J (d~)haW(1J~' • ~ -l}!', a and b = 1, 2. 

(2.2) 

[Here, for real t we define t: to be equal to e(± t)1 tllJ..] 
The generalized function appearing in the integrand can 
be rewritten using the formula12 

t: = (1/2i sinl1-lT)[exp(il1-lT)(t - iO) I' - exp( - il1-1T)(t + iO)1J.1 

(2.3) 

and then Kab takes the form 

K ab( P'; l1-;f) = J (dP)Gab( p, p'; /-L)/( p), 

Gab(p; P'; /-L)= (1/2isin/-LlT) J (d~)6(1Ja~' p -1) 

x [exp(i/-LlT)(1JbP' • ~ -1- iO)1J. 

-exp(-i/-LlT)(1JbP" ~ -1 +iO)"]. (2.4) 

By making use of the delta function present in the in
tegrand in Gab' and writing 'f iO as 'f ic . ~, where c is an 
infinitesimal positive time like vector, the functions Gab 
can all be expressed in terms of the standard function 
J(p, z; /-L) introduced in Ref. 5, p. 310: 

Gab( P,p'; /-L) = (1/2isinl1-lT)[exp(i/-L1T)J(1JaP' 1JbP' -1JaP -ic; /-L) 

- exp( - i/-L IT)J(1JaP, 1)~' -1JaP + ic; /-L)], 

J( p, z; /-L) = J (d~)6( p. ~ -l)(z· W. (2.5) 

[Note that J(p, z; /-L) is defined for p on r, Z arbitrary; 
we need to take Imz = positive or negative timelike and 
infinitesimal. 1 

Now J(p,z; /-L) is an explicitly Lorentz-invariant func
tion, being unchanged if both p and z are subjected to 
one and the same proper orthochronous homogeneous 
Lorentz transformation. Consequently, G ab( p, p'; /-L) is 
a Lorentz -invariant function of P and p'. Let us work 
out the values of these functions in the particular situa
tion where p has the form p=(O, 0, 0,1), while P' re
mains an arbitrary point on r. One then needs the val
ues of J( p, z; /-L) and J( - p, z; /-L) for various choices of 
Rez but with Imz always either a positive or a negative 
timelike infinitesimal vector. If we write z = q± iO, 
respectively, in these two cases, for J(p, q±iO; 11-) Ref. 
5, p. 329 gives the following values: 

J(p,q + iO;I1-) = -[2lT/(11- + 1)]exp(il1-lT/2)(-P'fiO)-1/2 

x{(_P'fiO)1/2 _it}IJ.·1 acc. as r/?20; 

J(p, q - iO; f.J.) = - [2lT /(/-L + 1) 1exp( - i/-L IT /2)(- P± iO)-1/2 



                                                                                                                                    

481 B. Radhakrishnan and N. Mukunda: Spacelike representations of the inhomogeneous Lorentz group 481 

X{(_P±iO)1 /2+if/},,·1 acc. as l~O; 

P= (/)2 _ (rf)2 _ (cf)2, 

tIL = I t I "exp(i/J argt), - 11" < argt < 11". (2.6) 

The values of J(-p,q±iO;Jl) follow from the observa
tion that J( p, z; Il) is generally unchanged if p and z are 
subjected to a common Lorentz transformation; since 
with p= (0,0,0,1), P is taken into - p by a rotation of 
180 0 about the second axis, all that happens is that f/ 
changes sign in the above expressions. In using these 
expressions, one can also avail of the formulas 

(_ P± iO)1/2 =p! 12± iF} 12, (_P± iO)-1/2= p:1/2 ~ ip:1/2• 

(2.7) 

One then finds for the set of four functions Gab(p,p'; /J) 
if 

P( p') '" (p,0)2 _ (p,lF _ (p,2)2 > 0, 

then 

Gu(p, P'; /J) = -[211"/(/J + 1)jp,, /2e(p,0)e(p'S -1) 

X[l + (p,3 _l)/pI /2]".1; 

Gl2( p, P'; Il) = - [211" /(/J + 1) jP" 12e( - p,O)e( - p,3 -1) 

x [1 _ (p,3 + 1) /pl /2j"+1; 

G21 (p, P'; /J) = - [211" /(Il + 1) jP" 12e( p,O)e( - p,3 - 1) 

x [1 - ( p,3 _ 1) /pl/2j"+1; 

G22( p, P'; /J) = - [211" /(11 + 1) ]p" 12e( - p,O)e( p,3 - 1) 

X[l + (p,3 _1)/pl / 2 ],,+1. (2.8) 

In all these expressions, P=P(p'). On the other hand, 
if P( p') < 0, we have 

Gu(p,p'; 1l)=G22(P, P'; /J) 

=d 1I"i( - P)" 12 /(/J + 1) sinl_l7r] 

x {exp(ill 11" /2)[1 _ i(l _ p,3)/( _ P)1/2]"+1 

- exp( - ill 11" /2)[1 + i(l _ p,3) /( _ P)1 /2]".1}, 

G12(P,P'; /J)=G 21 (P,P'; /J) 

= [1I"i(-P)" 12/(11 + 1) sin/J1I"] 

x {exp(iJ-l 11" /2)[ 1 _ i(l + p,3)/( _ p)1/2]1'+1 

- exp( - i/J 11" /2)[1 + i(l + p,3)/( _ P)1/2]".1}. 

(2.9) 
By studying the results in Eq. (2.8), we can try to form 
a linear combination of Gah(p, P'; Il) which does dis
criminate between the regions p,3> 1 and p,3 < - 1, but 
does not discriminate between positive and negative 
p,o. Let us choose the combination G = Gll + G22; with 
p= (0, 0, 0,1) we get for G 

if P> 0, p,3 < -1 
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. (. 1 - p,3 ) 1'+1J -exp(-t/J7r/2) 1+t(_P)1 / 2 if P< 0, 

(2.10) 

Another combination we could have considered is G' 
= G12 + G21 but this is easily derivable from G [at least 
when p = (0,0,0,1)]. In any case, it will suffice. to work 
with G alone hereafter. Going over now to an arbitrary 
point p on r, not necessarily p= (0,0,0,1) Eq. (2.10) 
can be written in invariant form thus: 

G(p,P'jll)=- /:1 [(p.p,)2_1],,/2 

( 
p. p' + 1 \ 1'+1 

X 1 - ';( P • P'}2 _ 0 if p. p' < - 1, 

= ° if p. p' > 1, 

_ 211"i [1- (p. p,)2]1' 12 
- (/J + 1) sin/J1I" 

[ (1 + P • p' ) 1'+1 
X LXP(i/J1T/2) 1-i ';1_(P'P,)2 

( 
1 + p. p' \ I'+~ 

-exp(-i/J1I"/2) l+i ';1_(p.p,)2} J 
if (p. p')2 < 1. 

(2.11) 

We can also go back to Eqs. (2.2), (2.4), and consider 
that linear combination that involves just the function 
G; this then gives 

J(dP)G(p,p'; /J)f(P) 

= (1/2i sinll 7r) 

x {j (d~)[exp(i/J 1I")(p' • ~ -1 - iO)1' 

-exp(-i/J1I")(p', ~ -1 +iO)I']~W 

+ J (d~)[exp(i/J1I")(- p" ~ -1- iO)1' 

- exp( - i/J 11")( - p' • ~ -1 + iO)1' ]h2W}. (2.12) 

As in Ref. 5, it is by examining the residues of both 
sides at the Simple pole that exists at /J = - 3 that we 
shall derive our inversion formula. Knowing now the 
function G( p, P'; Il) for all p, P', and since Eq, (2.12) 
is "manifestly Lorentz invariant, " let us first take P' 
in this equation to be the point (0,0,0,1) on r, and 
develop the left-hand side: 

J (dp)G(p,p'; /J)/(p) =11 +12, 

11 = .43}1 (dp)G(p,p'; /J)j(p) 

= f dpO dP: dp2 .(_ ~) 
p3>1 P /J + 1 

x [( pO)2 _ (pl)2 _ (p2)2]: 12(1 + ';(;:); ~ 1 r+1 

rep), 

12= J(til)2(1 (dp)G(p, P'; Il)/(p). (2.13) 

The residue of the term 11 at the simple pole at /J = - 3 
may be computed using the result13 

res « pO)2 _ (pl)2 _ (p2)2): 12 = _ 47T1i( pO) 1>( pi )o( p2). 
1'=-3 

(2. 14) 

On the other hand, in the case of the term 12 , the pole 
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at fJ. = - 3 arises from the explicit factor (sinJ.! 'IT)-1 pre
sent in G(p',p; p.) for (p. p/)2 < 1; the factor « p1)2 
+ (p2)2 - (pO)2)~ /2 has no pole at this value of fJ.. 14 so 
from (2.13) we obtain 

res J (dp)G(p, P'; p.)f( p) = -41T2f(0, 0, 0, 1) 
,,=-3 

+res J(dp)G(p,p'; fJ.)f(P). ".-3 </>3)2<1 

(2.15) 

It is straightforward algebra to check that in the case 
(p. p/)2 < 1, for quite general P', we have 

res G(p,p'; fJ.) I (/>./>,)2(1 = - p. p'(p . p' -1)[1 _ (p. p/)2)-3 /2; 
JI,:-3 

(2.16) 

we must remember later that the exponent - 3/2 here is 
the limit of 1l/2 as jJ. - - 3. Thus the calculation of the 
residue of the left-hand side in Eq. (2.12) for fJ. = - 3 
is complete. The calculation for the right-hand side can 
be done using the general result15 

res(l/2i sinll1T)[exp(ifJ.1T)(t - iO)" - exp( - ijJ.'IT)(t + iO)"] 
".-3 

=io"(t). (2.1'7) 

Putting together Eqs. (2.12)-(2.16), we get in the first 
place an expression for the value of f at the speCial 
point p' = (0,0,0, 1) on r, but because of the manifest 
Lorentz invariance we can immediately generalize this 
to an arbitrary point P' on r. Interchanging also the 
variables p and p', we get 

f{ p) = - (81T2tl J (d~)[hl (~)6"( P • ~ -1) + h2Wo Ir( P • ~ + 1)] 

+ (21T}-2 J
W

•
p

)2(1 (dp/)p· p'(l- p. p')fl- (p. p,)2]-S/2f( p'). 

(2.18) 

Let us at this stage change over the pair of functions 
hl.2(~) to the linear combinations 

h.(~)=~m±h2W, (2.19) 

The point is that if f(P) were split also into an even part 
and an odd part under p - - p, corresponding to its com
ponents in 'JC+ and Je. respectively, then h. depends on 
f. alone and h_ on f- alone: 

f{ P)=f.(p) + f'(P), f.(- p)=±!±(p), 

h±W=2J o(~·P-l)f.(P)(dP). (2.20) 

This relation between h+m and f'(P) coincides exactly 
with that in Eq. (1. 12). We then put (2.18) into the form 

f(P)= - (41T)-Z J (d~){h,<~)[5"(P' ~ -1) + o"(P' ~ + 1)] 

+ h_W[o"(P' ~ -1) - 0"( p. ~ + l)l} 

+ (2'IT)"2 J(p'.p)2(1 (dp')p, p'(l- p. p') 

x [1- (p. p')2]-3 f2f(P'). (2.21) 

This is the desired generalization of the inversion 
theorem obtained in Ref. 5 and quoted in Eq. (1.16). 
The part involving the functions h.(~) is already in a 
neat form separating the contributions to fJp) andf'(p) 
explicitly. The second term involving integration over 
the region (p • pl)2 < 1 in p' will be dealt with in detail in 
the next section; there we will express it in terms of 
the integrals of f( p) over isotropic lines, and show how 
this too splits explicitly into contributions to f.(P) and 
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!.(p). [Actually the even and odd parts in p in the sec
ond term of (2.21) can already be separated. ) 

The originally given unitary representation of the 
HLG in Je is now expressed as the sum of three repre
sentations: one acting on the functions h,<~), another on 
the functions h'<~), and a third on the functions of 
isotropiC lines. This last can evidently be again ex
pressed as the sum of two other representations, acting 
on functions of isotropic lines arising from functions of 
p respectively even or odd in p. These details are re
served for the following section. In the rest of this sec
tion, we consider the representations acting on h.(~). 

First we establish the fact that the functions h.(~) 
obey a family of constraints analogous to Eq. (1. 13) for 
h+W. hoW arises from f( p) thus: 

h.W= J (dp)[5(p· ~ -1) -5( p. i; + l)]f(P). (2.22) 

The contribution made by h.(~) to f(P) in the inversion 
formula (2.21) suggests that we define a function H.(p; t) 
for t a real positive number in this way: 

H.(p; t)= J (d~)h_W[o(p. ~ - t) - o(p· ~ + t) 1. (2.23) 

Then apart from the factor - (4'IT)-2, the term involving 
h-<~) in Eq. (2.21) is just the second derivative of 
H.( p; t) with respect to t, at t=: l·HJp; t) is explicitly 
odd in p. Unlike the analogous function defined in Ref. 
5 and related to h,<~), the definition given above for H. 
involves no divergent quantities, and no regularization 
of the type used in Ref. 5 is needed to make it well de
fined; this happens because the difference of two delta 
functions occurs in (2.23). HJp;t) can be related tOf(pt) 
via a kernel K.(p,p'; t): 

H_(p; t) == J (dp')K.(p,p'; t)f(P'), 

K.<p,p'; t) == J (d~)[1i( p. ~ - t) -5(p· ~ + t)][o(p'· ~ -1) 

- 6(p'· ~ + 1)]. (2.24) 

We can now express K. in terms of the invariant func
tion J used earlier. The steps are 

K.(p, P'; t) = J (d~)[5( P . ~ - t) - 5(p . ~ + t) ][o( p' . ~ -1) 

- 5( p' . ~ + 1)], 

=tf(d~)[o(P' ~ -1) - o(p· ~ + 1)] 

[5(tp'· ~ -1) - o(tp'· ~ + 1)], 

= ~ 1m J (d~)5( p. ~ _l){[{tpt - p - iO). ~]-l 

- [(tp, + p - iO)· ~]-1} 

- ~ 1m f (d~)o( p. ~ + l){[(W + P -iO)· ~]'l 

_ [(tp, - p - iO). ~]-l}, 

= .! 1m lim [J(p, tp' - p - iO; Il) 
'IT /.1.--1 

-J(p, tp' + p - iO; jJ.) -J(- p, tp' + P -iO; J.!) 

+J(-P,tp'-p-iO;/l)]. (2.25) 

Since K. is a manifestly Lorentz invariant function of p 
and p' let us evaluate it in the case p == (0, 0, 0, 1), p' 
arbitrary. Using Eqs. (2.6), (2.7), one finds some 
delicate cancellations taking place as the limit J.! - - 1 
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is taken, and one gets the following values for various 
configurations of P': 

p=(O, 0, 0,1): 

K.(p, P'; t) = 21Tp-1 /2[8(1_ t(P /2 + p,S» 

+ 8(1 - r1(p /2 + p,S» -1] if p's > 1; 

= 21Tp-1 /2[8(1 + t(P /2 + p'S» 

+ 8(1 + r1(pl /2 + p'S» -1] if p's < -1; 

= 2( _ p)-1 /2In[(t + r1 + 2p,S)/(t + r 1 _ 2p'S)] 

if Ip,sl < 1. 

(2.26) 

Here P=P(p')= (p,O)2 _ (p,1)2 _ (p,2)2. Generalizing to 
arbitrary p, we have the symmetry relation 

K.(p,p'; t) =K(P, P'; rl); (2.27) 

written in terms of h.(~), this relation is 

J (d~)h_(~)[6(P' ~ - t) -6(P' ~ + t)] 

= J (dl;)h.(I;)[6(P·1; _rl) -6(P·1; +r1)]. (2.28) 

This replaces Eq. (1. 13).16 

Under the transformations of the HLG, hJ1;) trans
forms in the same way as h.(I;), 1. e., via Eq. (1. 18a): 

h_(~") - h.(A-1"v~V). (2.29) 

The decomposition of this representation into irreduci
bles is therefore achieved in exactly the same way as in 
the case of h.(I;). If for each real p we define F.(~; p) by 

(2.30) 

then we will have a homogeneity property for F_ and 
can recover h_ from F _: 

F.(a1;; p)=a-1+iP/2F.(~; p), a> 0, 

h-<~)= (41T)-1 f: dpF.(1;; pl. 

(2. 31a) 

(2. 31b) 

Following the arguments of Ref. 5, we conclude that 
when h_ transforms via Eq. (2.29), FJ~;p) transforms 
by the urn {O, p} of the HLG. The replacements for 
Eqs. (1. 21a, c) are 

F-<~; p)::: J (dp) I ~. P 1-1+ iPI2[8(1;' p) - 8( - ~. p) ]f(P), 

(2. 32a) 

J (d1;)F.(~; p)[Ii(P'1; -1) -6(p· ~ + 1)] 

In Je_, as in Je+, we find that the UIR's {O, p} for p> ° 
appear, once each, in the form of a direct integral. We 
turn now to the representation associated with isotropic 
lines. 

III. ANALYSIS OF REPRESENTATION ON ISOTROPIC 
LINES 

In dealing with the second integral in Eq. (2.33), we 
face essentially this problem: given a function g(p) on 
r, express 

W(p;g) =J 2 (dp')g(p'), PE r, 
w'p) "1 

(3.1) 

in terms of integrals of g along isotropic lines. fA 
possible dependence of g on the P occurring in W( P; g) is 
suppressed.] We do not assume that g is an even function 
on r, and so we shall go through the analysis in spite of 
some overlap with Ref. 5. 

First let us consider the case 

p = (sinh?;, 0, 0, cosht); (3.2) 

writing Sand C for sinh~ and cosh?;, we deal with 

W(S, 0, 0, C):::: Jwos-P'sc )2"'1 (dp')g(p'). (3.3) 

To get a neater integration domain, change variables 
from P' on r to q on r by 

P'o =,fC + r/S, Pi = qu p's = rIc + ,fS. (3.4) 

1 refers to the projection in the 1-2 plane. Then, 

W(S, 0,0, C; g):::: Jqs )2"'1 (dq)g(qOc + r/S, ql' rIC + rfS), 

=f'ld1i dq
1
dq2 6 g(rfc 

-1 ~"1-tfs w(q) qOdw(4) 

+ r/S, qu rIC + ls), 

w(q)= + (lql2 _1)1/2. (3.5) 

For fixed I, we have to integrate in the q1 - q2 plane 
over the region outside the circle of radius (1 - 1a)1 /2 

centered at the origin, and this must be converted into 
integration along isotropic lines. So let us parametrize 
q" for fixed r/ in this way: 

lC+r/s=t, r/C+rfS=bs+W, 

ql ::::b1 + t~l> 

1. e. , 

l=(C -1;SS)t-bSS, r/=(;SC -S)t+bsC, 

ql =b1 + t~l' (3.6) = J (d1;)F.(~; -p)[6(P'1; -1) -6(P'1; + 1)], 

for all p, P on r. (2.32b) If for all t we want q to lie on rand Ia to be bounded by 
unity, we find these conditions: 

The characteristic differences as compared to the pre
vious case must be noted. Again the constraints on 
F.(~; p) are compatible with their known irreducible 
transformation laws. Finally, we can express the first 
term in the general inversion formula (2.21) in terms of 
F.(~; 0) for 0> 0, to get: 

f(p)=t(41T)-S fo~ p2dp J (d~){F.(1;; p)[6(P'1; -1) 

+ 6(p· ~ + 1)] +F.(~; p)[6(p· ~ -1) -6(P'1; + 1)]} 

+ (21T)-2J. 2 (dp')p,p'(1-p.p') 
(P'p') <1 

X (1 - (p • p' )2)-3/2f (p'). (2.33) 
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I;~ + 1;~=b~ +b~:::: 1, ~ 'b=O, ~s=S/C, bS
:::: q3/C. 

(3.7) 

In particular, as expected, ~ and jj are unit vectors 
orthogonal to one another. Further, from these equa
tions we find that as ~.L and b.L vary with q.L over a plane 
of constant q3, they enclose an angle y that does not 
vary with %. but depends only on q3 (and t): 

COSy=(1;l 'b)/11;11Ib11 =_sr/Ac2_(q3)2]1/2, 

O<SY<S1T. (3.8) 

Therefore, if ~l makes an angle <P with the q1 axis in the 
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1-2 plane, b1 must make an angle (cf> -'Y) or (cf> +Y). We 
have then two alternative ways in which new integration 
variables t, cf> may be introduced in place of ql - q2' 
concisely expressed by: 

(A) q1 + iq2 = exp(icf»(t + [C2 - (q'l)2]1/2 exp( - iy»/C, 

(B) q1 + iq2 = exp(icf> )(t + [C2 - (q'l)2]1/2 exp(iy»/C. (3.9) 

We shall agree to use (A), but the existence of the al
ternative (B) will lead to a symmetry relation. The vec
tors ~ and b corresponding to (A) have components 

~(cf» = C·1(coscf>, sincf> , S), 

b(q'l, cf» = C·1([C2 - (q'l)2)1/2 cos( cf> - y), r C2 - (q'l)2]1/2 

Xsin(cf> -Y), tf). (3.10) 

We also easily check that 

-- ~ ••• = - dt dcf>··· (3.11) J dqldif 1 J"" i 2r 

.2"1 •• 2 w(q) .o=:w(q) C."" ° 
1 3 

so Eq. (3.5) takes the form 

W(S,O,O,C;g)= f: dtf~ f: dt£2' dcf>g{t,~(tf,cf» 
+ tHcf>)). (3.12) 

Let us now deal with the q'l integration. Since ~ has no 
dependence on rI, b(q'l, cf» is orthogonal to ~(cf» for all 
rI. So b(rI, cf» arises from b(l, cf» via a right-handed 
rotation of some amount a about ~(cf». cosa is easily 
determined: 

(3.13) 

It can be checked that the range ° .;; a .;; 7T as tf goes from 
-1 to + 1 corresponds to picking alternative (A) in (3.9). 
So (3.12) is transformed into 

W(S, 0,0, C; g) = for sina da ~ 1: dt i 2

• dcf> 

xg{t, t~(cf» +R(a, ~(cf»)b(l, cf>)), 

b(l,cf»=p-pO~(cf». (3.14) 

As a last step, let us express the cf> integration in terms 
of an integration over all directions of ~ and a suitable 
delta function: 

(3. 15) 

With this, we may free ourselves from the special con
figuration (3.2) for p, and write the general formula 

W(p; g) = for sina da f dnm f: dt o(pO -p' ~) 

xg{t,t~+R(a,~)fj), (3.16) 

b=p-pot 

The fact that the ql - q2 integration could be converted 
into a t - cf> integration using either choice (A) or choice 
(B) in (3.9) can be seen to lead to the symmetry relation 

f dna> r: dt6(pO -p' ~)g(t, t~ + R(a, ~)b) 

= f dnm f.: dt 6( pO - p' ~)g(t, t~ + R(27T - a, ~)b) 

for all a, p on r, b =p - pot (3.17) 

(The symmetry relation used in Ref. 5 is obtained by 
combining this more general one with the evenness of 
g. ) 
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Let us now use formula (3.16) to handle the second 
integral in (2.33). Define, as an extension of (1.14) the 
function cp(t b) on the isotropic lines by , 

CP(tb)=1.:dtf(t,b+t~). (3.18) 

Then (2.33) becomes 

f(P)='" -(21T)·2 r7 

da sina cosa(~osa +1) 
)0 sm3a 

x f dnm6(pO-p·~)cp(tR(a,~)b), 
b =p -pot (3.19) 

The dots stand for the terms involving h,.(~), which we 
have omitted writing again. Therewith we have com
pleted the proof of our generalization of the inversion 
formula of Ref. 5 from even functions on r to all func
tions on r. The constraints on cp following from Eq. 
(3.17) are 

f dna)6(pO -p' ~)cp(t R(a, ~)b) 

= f dn(~)6(pO -p' ~)cpa,R(27T -a, ~)b), 

b =p - pO~, for all a, p on r. (3.20) 

This generalizes Eq. (1. 15) to all f(P). Making use of 
it, one can also obtain 

f(-P) = .•• _(27T)'2 i' da sina cosa(~osa -1) 
° sln3a 

x f dna)o(pO -p' ~)cpa, R(a, ~)b), 
b=p-po~. (3.21) 

We have used here the same value for b as is needed in 
Eq. (3.19), not its negative, so that on comparing Eqs. 
(3.19) and (3.21), it is easy to see what terms in the 
general inversion formula contribute to f.(P), and what 
terms to f'(P). 

For the further analysis and decomposition of the 
representation of the HLG on functions cp on the isotrop
ic lines, we shall use an approach slightly different 
from, but of course equivalent in essence to, that of 
Ref. 5. The notation we will use is suggested by the 
structure of the regular representation of R(3); this is 
convenient because cp(t b) can be thought of as a func
tion on R(3), obeying suitable constraints. Let e~O), 
e~O), eiO) be three unit vectors in the directions of the 
three axes in p-space. Given an acceptable pair of vec
tors ~ and b, the triplet b, ~xb, ~ always defines some 
right-handed coordinate system, obtained from the 
fixed e~O) by a unique element of R(3). In this way, ~e A 

have a well-defined correspondence between pairs (~, b) 
and elements in R(3); we agree to call ~ and b the unit 
vectors es, e1 respectively, of a variable triad, this 
triad being related to the fixed OI~e e~O) by a variable 
element in R(3). A function cpa, b) becomes a function on 
R(3). Referring to elements of R(3) by the matrices 
A(G), the triad e j(G) is defined in Appendix A by 

At the same time let us use for cp(t b) the bra-ket 
notation: 

(3.22) 

(3.23) 
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We can now express the constraints (3.20) on the allowed 
vectors I cp) using the operators of the left and right 
regular representations of R(3). Since the a rotation in 
Eq. (3.20) is about the variable e3 axis, this dependence 
is naturally expressed via the left regular representa
tion operators: 

cpa,R(a, ~)b)=(tR(a, ~)blcp)=(Ajk(O,O, -a)eklcp) 

=(eklexp(- iaJi) I cp). (3.24) 

Therefore, the constraints on I cp) can be written as 

J dna>()( pO - p' ~)(~, b 1 [exp( - iaJ/') - exp(iaJ/') 11 cp) = 0, 

b=p-pot for all a, p on r. (3.25) 

Now these constraints are all preserved under the ac
tion of the HLG; this suggests that the operators repre
senting the elements of the HLG will all commute with 
J/,. That this is the case for the R(3) subgroup of the 
HLG can be easily established; indeed the corresponding 
operators give just the right regular representation of 
R(3)! Under a general transformation A <:::: HLG, the 
representation on the functions cp(t b) is given again by 
Eqs. (1. 17), (1.18): 

f(P'") - f'(P'")=f(A-l,"vpv), 

cp(t h) - cp,(t h) = [AoO + A /~JICP(A -let h». (3.26) 

If A is the element A(fJ) in R(3), then, resolving ~ and b 
into their components along e~O), we have 

cp'ak, bk) = i: dff'(t, ~k + f~k) = cp(A jk(fJ) ~j,A Jk(fJ)b j)' 

Reverting to vector notation, this reads [see Eq. (A.7)] 

(e k I cp') = (t b I cp') = (R(fJ)~, R(~)b I cp) 

= (R(fJ)ek I cp) = (ekl exp(i~' JR) I cp), 

i.e., Icp')=exp(i~'JR)1 cp). (3.27) 

Later on we shall explicitly compute the generators for 
pure Lorentz transformations in this representation of 
the HLG on functions cp(~, h) and show that they too com
mute with J/,. 

To decompose this representation of the HLG into 
irreducibles, we must therefore break up each I cp) into 
its projections in the various eigenspaces of J3L. We 
shall define, for an allowed I cp), 

I Cp; n)=t .C~ da exp[- ia(Ji +n)] I cp), n=O, ± 1,±2,'" 

(3.28) 

I cp) may be recovered via 

Icp)=1T-l t Icp;n) 
"=_00 

(3.29) 

and I cp; n) is an eigenvector of J3L with eigenvalue -no 
In conformity with Eq. (1. 23), we shall write the wave
functions corresponding to I cp; n) and their properties in 
this way17 

F(t h; n)=(t b Icp; n)=t 102
< da exp(-ian)cp(tR(a, ~)h), 

Fa, R(f3, ~)b; n) = exp(in~)Fa, b; n), 

(3.30) 

(The second equation above corresponds to I cp; n) being 
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an eigenvector of Jf. ) Analogous to Eq. (1. 25a), we now 
have 

Fa, bj n) = t J (dP) exp[ - ina(t h; p)]()(pO - p. Df(P), 

p-po~=R(a(tb;p),~)b. (3.31) 

The constraint relations on cp are translated into this 
form: 

J dn(~)()( pO -p' ~)a, b J{ I Cpj n) - I cp; - n)}= 0, 

b=p-pot for all n, pon r. (3.32) 

As will be clear from Appendix B, these relations state 
that ICP;n) determines ICP; -n) for each n, so only the 
vectors I Cp, n) for n ~ 0, or corresponding wave functions 
F(t b; n) for n ~ 0 are truly independent. 

We saw above that in the representation of the HLG on 
the space of functions cp(t b), the R(3) subgroup of the 
HLG is realized via the right regular representation of 
R(3) (but, of course, the space is reduced by a factor 2 
due to the constraints). From the structure of the regu
lar representation of R(3) we know that in the eigen
space of J3

L with eigenvalue - n, the representation of 
R(3) generated by the operators JI; is the direct sum of 
infinitely many finite dimensional UIR's of R(3), with 
each of the "} values" I n I, I n I + 1, I n I + 2, ••• ,00 oc
curring once. We know that each eigenspace of Jf is 
invariant under the HLG, given the law of transforma
tion (3.26); on the other hand, we saw in Sec. 1 that the 
full space JC can contain only two types of UIR's of the 
HLG, namely {jo, O} and {O, p}. From all of this it follows 
that when cp(t b) is transformed via Eq. (3.26) under the 
HLG, the functions F(t b; n) for fixed n transform via 
the UIR {I n I , O} of this group. Taking into ac count the 
constraints on Cp, we have the result that the represen
tation of the HLG on the functions cpa, h) is the direct 
sum of the UIR's {n, O} for n= 1,2, 3,"', each appearing 
once. (As pointed out in Sec. 1, the term n = 0 is ab
sent!). Clearly, the even n values belong to JC., the odd 
ones to JC_. 

We can express now the isotropic line contribution in 
the general inversion formula in terms of the various 
n values. The relevant expression is in Eq. (3.19) and 
can be developed as follows: 

(21T)-2 (. dOl sinOi COSOl(~03SOl + 1) jdna)o(pO _p.~) 
Jo sm 01 

x J dn(~)Ii( pO - P . ~) . 1T-l~t.. 

x exp(inOl)Fa, b; n) 

=4(21T)-3 ~ c" J dna>li(pO -p.~) 

XF(~,~;n), 

i '/2 COS201 
C" = (1 + (- 1)") dOl cosnOi -'-2- + (1 - (-1)") 

o SIn 01 

i '/2 COSOI 
x dOl cosnOl-.-2- • 

o sm 01 
(3.33) 

These integrals diverge, and as remarked immediately 
after Eq. (2.16), they must be understood as the limits, 
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as ;\ - - 2, of similar integrals in which sin-2Q is re
placed by sinAQ. Using standard formulas, we get uni
formly for all n ~ 1 

(3.34) 

The final expansion formula for a function j( p) in terms 
of the associated functions F+(~; p), F-<~,p), and 
Fa, b; n), where the first two transform via the urn 
{O, o} of the HLG and the third via the urn {n,O}, is ob
tained by putting together Eqs. (2.33), (3.19), (3.33), 
and (3.34): 

j(p) = t(41T)"3 10'" p2 dp I (d~){F .<~; p)[5(p· ~ -1) 

+ 5(p· ~ + l)]+F-<~; p)[6(P' ~ -1) -fJ(P' ~ + 1)]} 

+ 21T-2~ln J,dQ(~)fJ( pO -p' ~)F(t b; n), 

(3.35) 

The last item in this section is to compute the forms 
of the generators of pure Lorentz transformations for 
the representation of the HLG acting on cp(t b), and 
check that they do commute with J;. It suffices to get 
the form of the operator K 3 • Let us now introduce Euler 
angles ljJ, (), <p to describe the orientation of the triad 
defined by ~ and b relative to e;O); i. e., for the com
ponents of ~ and b we have (see Appendix A) 

~ = (sin() cosep, sin(} sinep, cos(}), 

b = (cosljJcos() cosep - sinljJ sinep, cosljJ cos(} sinep 

+sinljJcosep, -cosljJsin(}). (3.36) 

The expressions for the two commuting sets of R(3) gen
erators Jf, Jf are given in Appendix A. If we now con
sider an infinitesimal pure Lorentz transformation in 
the 3 direction, whose effect on a function j( p) is the 
following: 

j( p) - j'(p) = [(1 - i;\K3)j]( p) = f( pO - ;\p3, PH p3 _ "ll.pO) , 

1;\1«1, (3.37) 

then one finds after simple algebra that the change in 
cp(~, b) is --

cp(t b) - [(1 - i"AK3)CP ](t b) '" (1 + ;\e)cpa + 6~, b + 6b), 

fJ~l =;\e ~H fJe = ;\(~; -1), 

I)b 1 = M3 ~H 1)b3 = ;\b3 ~3. (3. 38) 

By using Eq. (3.36), the associated changes in ljJ, (), and 
ep turn out to be 

6ljJ= fJep =0, M=;\sin(}. (3.39) 

So we may write (3.38) in the form 

cp(ljJ, (), ep) - [(1 - i;\K3 )ep l(ljJ, (), ep) = (1 +;\ cos(})cp(ljJ, () 

+;\ sin(), ep) 

and this gives immediately the form of K3 as far as 
the action on cpa, b) is concerned: 

K3 = i (COS() + sin(} o~) . (3.40) 

We see explicitly that K3 commutes with both J; and 
J 3

R ; the latter of course follows from the commutation 
rule, in Eq. (1. 3). Since the components K 1 •2 can be 
gotten by commuting K3 with J2~1' we have shown that 
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J 3
L commutes with all the HLG generators in the repre

sentation on functions on isotropic lines. 

IV. ALTERNATIVE DESCRIPTION OF 
REPRESENTATION ON ISOTROPIC LINES 

When one compares the timelike, lightlike, and space
like UIR's of the IHLG (all with vanishing helicity) with 
one another, from the point of view of introducing a 
Lorentz basis the really distinguishing feature of the 
space like case is the occurrence of the representation 
associated with functions on isotropic lines. Of course 
the reasons for this are very beautifully explained in 
Ref. 5; nevertheless it is of some value to give an al
ternative way of looking at this representation, espe
cially as it helps us understand the structure of its 
generators. 

It is a well known fact that if one is given a unitary 
representation of the three-dimensional Euclidean group 
E(3), with generators J k of rotations and P k of transla
tions obeying the commutation rules 

[Jk' J1] = i€",,,,J.,, [Jk, P,] = iE",.,P." 

[Pk,P,]=O, (4.1) 

and if one then defines three operators Kk in terms of 
J k and Pk by 

Kk=(p+i)Pk-Ekl.,P,J." (4.2) 

then J k and Kk obey the commutation rules correspond
ing to the HLG and so generate a unitary representation 
of this group. 18 In this construction, p is any real num
ber. The UIR's of E(3) can be labelled (jo,p): jo is an 
integer [positive or zero and denotes the "lowest" UIR 
of R(3) present], while p is any real number .19 The 
Casimir invariants of E(3) and their values in (jo,p) are 

(4.3) 

If we carry out the construction (4.2) using the genera
tors of the UIR {jo,p} of E(3), we end up with the UIR 
{jo,pp} of the HLG. As with the HLG, here also two dif
ferent pairs (jo,p), (j~,p') denote inequivalent UIR's of 
E(3) except for the equivalence of (O,p) and (0, -pl. 

There is a very natural way to construct a unitary 
reducible representation of E(3) in the space of the 
regular representation of R(3), and it can be briefly ex
plained as follows. 20 The space consists of all square 
integrable functions on R(3); using Euler angles ljJ, G, ep 
to parameterize R(3), we deal with functions j(lj;, (), ep) 
obeying 

IoZ. dlj; fa27 dep fa7 sinede V(lj;, e, ep) 12 < "". (4.4) 

A continuous basis of ket vectors Ilj;eep) may be intro
duced with appropriate orthonormality relations. The 
matrix of R(3) corresponding to given angles ljJ, e, ep is 
given in Appendix A, and is written A(lj;, G, ep). If we take 
for the R(3) subgroup of E(3) the right regular repre
sentation generated by the operators J:- given in Appen
dix A, and if for Pk we define the action on IljJGep) by 

PklljJGep)=L; PAk(ljJeep) I ljJeep) , (4.5) 
J 

then J k
R and Pk together give rise to a unitary represen

tation of E(3). Here Pk is any triplet of real numbers 
and characterizes the representation. Let us now choose 



                                                                                                                                    

487 B. Radhakrishnan and N. Mukunda: Spacelike representations of the inhomogeneous Lorentz group 487 

P
k 

to have the form (0,0,1): Then the operators Pk , 

which are in any case diagonal in the basis 1l/J8cfJ) and so 
just operators of multiplication, reduce to 

~=sin8coscfJ, ~=sin8sincfJ, Pg=cos8. (4.6) 

Now, the generators J k
R and Pk all commute with the 

operator J; from the left regular representation of R(3). 
We can break up the full space into the eigenspaces of 
J; for various eigenvalues 0, :1:1, :1:2,···. In the eigen
space on which J3

L = n ~ 0, we then find that we have the 
UIR (n, 1) of E(3); while in that on which J f = n < 0, we 
have the urn (Inl, -1). In particular the urn's of E(3) on 
the subspaces with Jf =n and J3

L = -n are not 
equivalent. 

starting with this direct sum of UIR's of E(3), which 
may be symbolically written 

i] Ell (n, l)Ellt Ell (n, -1), 
nmO nd 

let us apply the construction (4.2) for p= O. Clearly, 
the subspace on which the UIR (n, 1) of E(3) operateL 
now supports the UIR {n, O} of the HLG; and in the sub
space carrying the UIR (n, - 1) of E(3) too we now get 
the UIR {n,O} of the HLG. We have thus the generators 
for a unitary representation of the HLG, in the space of 
the regular representation of R(3); and this consists of 
the direct sum of UIR's 

tEll {n, O}EE't Ell {n, O} 
n.o nI:l 

of the HLG. Notice now that the two subspaces corre
sponding to Js

L = nand J f = - n both support the same 
UIR {n, O} of the HLG; this has happened because we 
chose p= 0; otherwise one subspace would support the 
UIR {n, p}, the other {n, - pl. (Of course, all the HLG 
generators commute with J;). The generators of this 
rather special unitary representation of the HLG are 
easily obtained, using Eq. (4.2) for p=O, Eq. (4.6) and 
J

k
R as given in Appendix A. K 3 , for example, turns out 

to be 

K3 = iPg + ~JIR - ~J2R = i(COS8 + sin8 a
V8)' (4.7) 

This coincides exactly with the result of Sec. 3! Thus 
with this construction we understand in a new light the 
forms of the generators for the representation of the 
HLG analyzed in the last section. 

To reduce the present representation to the previous 
one, two things have to be done and they will be de
scribed qualitatively. The operator exp(i1TJi') inter
changes the eigenspaces corresponding to J 3

L = n and 
to J 3

L = -n with one another. It is easily checked to also 
switch the signs of Pk and K k , i. e. , 

exp(i1TJ2
L )(P" or K k ) exp( - i1TJn = (- p" or - K k ). (4.8) 

[Kk defined in Eq. (4.2) using Pk and Jk
R ). On the other 

hand, within a UIR of the HLG of the form {jo, O}, there 
always exists an operator C that commutes with the 
R(3) generators and anticommutes with the Kk's. Such 
an operator can then be set up on each eigenspace of 
J3

L , and so on the entire space of the regular represen
tation of R(3). This C commutes with Jf, and of course 
with J:. The product C exp(i1TJ2

L ) then has these prop-
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erties: it anticommutes with Jf but commutes with all 
the generators of the HLG representation that has been 
set up on the space of the regular representation of R(3). 
The subspace conSisting of functions on R(3) which are 
eigenfunctions of C exp(i1TJ2

L ) with eigenvalue + 1 is then 
a Lorentz invariant subspace, and is (apart from a 
modification in the scalar product) just the space of 
functions on the isotropic lines obeying the symmetry 
conditions of Eq. (3.20). In this subspace, each of the 
UIR's {n,O} for n=0,1,2,.·· occurs just once. (A more 
detailed analysis of these symmetry relations is given 
in Appendix B, ) The next step to be taken is to essen
tially modify the scalar product given in Eq. (4.4) by 
including the operator (Jf) as a metric operator. This 
is to accomodate the factor n that appears in the dis
crete summation in Eq. (3.35). By these steps, then, 
the representation of the HLG analyzed in Sec. 3 may be 
produced from the one set up in this section starting 
from a representation of E(3). 

V. CONCLUSION 

In Sec. 1 we defined the "spinless" spacelike UIR of 
the IHLG, on the Hilbert space :Ie of all square integra
ble functions f(P) on the single-sheeted hyperboloid r. 
By a simple extension of the techniques of Ref. 5, we 
have shown that this contains the following UIR's of the 
HLG: each of the UIR's {o, p} for 0 < p < 00 in the form of 
a direct integral, with multiplicity two; each of the 
urn's {n, O} for n = 1,2,. ., in the form of a direct sum, 
with multiplicity one. Half of the former, and those of 
the latter with n even, belong to the subspace :Ie. of even 
functions on r; the rest belong to the subspace :Ie_ of odd 
functions. The components of f(P) belonging to the sub
spaces of these urn's are given by F.(~; p), F-<~; p), and 
F(t 5; n); these are expressed in terms of fin Eqs. 
(1. 21a), (2. 32a), and (3.31), and! can be reconstructed 
using Eq. (3.35). The original scalar product in:le can 
be reexpressed in terms of F*(~;p), F(Lb;n), exactly 
as in Ref. 5; the result reads 

fr (dp) If(P) 12 = t(41T)-S 10" p2 dp f dn(~)[ IF.(t; p) 12 

+ IF-<t;pW) 

+41T-2'tdnf dn(~)IF(tb;n)12. (5.1) 

It is interesting to recall the results in the cases of 
the "spinless" timelike and lightlike urn's of the IHLG 
(both with positive energy), because one can then see 
the changes that occur in the reduction under the HLG. 
The spinless timelike UIR contains each of the UIR's 
{O,p} of the HLG once, of course as a direct integral 
from p= 0 to p= 00. When we examine the "spinless" 
lightlike case, the spectrum just doubles: Each of the 
urn's {O, p} for 0 < P < 00 appears twice. Finally in the 
case analyzed in this paper we get all the urn's present 
in the lightlike case, as often, plus the infinite discrete 
sum of the UIR's {n,O}. This last is the most striking 
feature of the spacelike case. 

The problem of setting up Lorentz bases in general 
(not spinless) timelike and lightlike UIR's of the IHLG 
has been solved by several authors. It would be most 
interesting to see how the results of the present paper 
change when a space like UIR with nonzero helicity is 
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examined. Equally interesting, even in the spinless 
case, is to understand how the energy-momentum 
operators PI' act in the Lorentz basis, especially how 
they "connect" the continuous basis vectors correspond
ing to {o, p} to the discrete ones corresponding to {n, 0}.21 
We hope to analyze these problems elsewhere. 

APPENDIX A: REGULAR REPRESENTATION OF R(3) 

The structure of the regular representation of R(3) is 
of course well known. Our purpose here is just to ex
press it in a slightly unusual form, and to collect some 
useful expressions. 

Elements of R(3) can be identified with real orthogonal 
unimodular matrices in three dimensions. Using axis
angle variables, for every triplet of real numbers at 
= (au a 2 , as) we define the 3 x3 matrix A(a) by giving 
its matrix elements 

AJk(a)= 0Jkcosa + aJak(l-cosa)/a2 

(AI) 

By giving all directions to cr, and allowing the range 
0'" a'" 1T, all elements of R(3) are obtained. Some use
ful relations are 

A(aJ-l =A(- at), 

A(a)A(~)A(- at)=A(,,), J3j=A'k(a)i3k. (A2) 

Another useful geometrical relation is needed. We will 
think of some fixed triad of unit vectors ejD> as given 
once for all, and will write eJ for a variable triad; both 
are right-handed. By R(w) we shall mean the geometri
cal operation of applying a right-handed rotation by the 
angle I w I about the axis wJe?>; !.II is just a triplet of real 
numbers, and R(",,) is an operator to be applied to vec
tors. (Sometimes in the text, the magnitude and direc
tion of w are separately given). Between the operator 
R(w), the matrix A(cr) and any triad eJ , we then have 
the useful relation 

(A3) 

The regular representation of R(3) acts in the space 
of aU square integrable functions f(a) on R(3), the 
scalar product being given by 

(j,j) = Jo' (1 - cosa)da J dO(a) If(a) 12 < 00. (A4) 

For the corresponding continuous basis of ket vectors, 
we will write IA(Il». The operators for the left and 
right regular representations will be U(A{,,» , V(A(a)), 
respectively; their generators are J{:, Jk

R • These two 
representation operators act according to 

U(A(a)) IA(~» = exp(- iQ' JL) I,A(~»= IA(Q)A(~), 

V(A(Q» IA(~)= exp(- ia' JR) 'IA(~» = IA(~)A(- a». 

(A5) 

Now an alternative notation for these same vectors can 
be developed as follows: For each a, let the triad e,(Q) 
be obtained from the fixed triad by using the matrix 
A(a), 

(A6) 

Then we have a one-one correspondence between right
handed triads eJ and elements A(Q) in R(3), the group 
element being determined by the relation of the triad 
eJ to the fixed one ejo>. The basis kets for the regular 
representation of R (3) can now be written as I e J)' the 
"range" of eJ being all right-handed triads in 3-space, 
and always being measured relative to e?>. By com
bining Eqs. (A2) , (A3), (A5), and (A6), we can express 
the U's and V's in the new notation in this way: 

!AJk(a)ek) = exp(- ia' JL)' e J)' 

I R(a)ej )= exp(- ia' JR) I ej ). 

(A7a) 

(A7b) 

These are very simple equations. It is possible to ex
press the left-hand side of (A7a) in terms of JR, and that 
of (A7b) in terms of JL; but the resulting equations are 
cumbersome and unnatural. In using this notation for 
handling functions on isotropic lines, we identified ~ 
with es and b with e1 • 

If we use Euler angles 1/!, e, cp as parameters for 
R(3), we use in place of the matrix A(a) the matrix 
A(1/!,e,cp) 

(

Cos1/!cose coscp - simp sincp; cos1/! cose sincp + sin1/! coscp; - cos1/! Sine) 

A(1/!, e, cp) = - Sin1/! cose coscp - cos1/! sincp; - Sin1/! cose sincp + cos1/! coscp; sin1/! sine . 

Sine coscp; sine sincp; cose (A8) 

Then, JR and JL are given as partial differential opera
tors as follows: 

R • (, a. a coscp a) 
J 1 =z\cotecosCPacp +smCPae - sine a1/! ' 

R.f . a a sincp a) 
Jz =t\cotesmcp acp -coscp ae - sine a1/! ' 

J R • a 
3=-Zacp' (A9a) 

L'/ a. a cos1/! a ) 
J 1 =Z\cotecOS1/!a1/! +sm1/!ae - sine acp , 
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L . ( . a a Sin1/! a) 
J 2 =z \-cotesmlPa1/! +COS lP ii6 + sine acp , 

J L . a 
3 =z alP . 

These expressions are used in Sec. 4. 

APPENDIX B: SYMMETRY RELATIONS ON THE 
FUNCTIONS 1P(~.b) 

(A9b) 

The functions rp(g, b) on isotropic lines that arise from 
functions f(P) on r via Eq. (3.18) are subject to the con
tinuous family of constraints given in Eq. (3.20). While 
these constraints on rp are by their origin Lorentz-
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invariant, they are somewhat difficult to grasp for two 
reasons: (a) the continuous variables p and a appear in 
them and in fact enumerate them; (2) they are nonlocal 
in cp in the sense that they do not relate cp at one "point" 
to cp at another "point" but involve integrals of cpo Their 
meaning would be more transparant if we could find an 
alternative description of cp, 1. e., a "wavefunction" for 
I cp) in some other basis, in which p and a drop out in 
the statement of the constraints, and at the same time 
this statement becomes local. We show here how this 
may be achieved. 

The basic condition on I cp) is this: For each p on r, 
the expression 

f dn(~)o(pO -.p. ~)(t b I exp(ia~) I cp), 6 = p - pot 
(Bl) 

should be an even function of a. Let us write here, 

p= (sinht,pcosht), (B2) 

and let p arise from the vector eJO) by the rotation R(n), 
n dependent on p. If then we change variables in (Bl) 
from ~ to ~, by ~ =R(n)~', we have the statement 

f dn(~' )1i(sinht - ~'3 cosht)(~' ,b' I exp(in' JR) exp(iaJ~) I cp) 

should be an even function of a. for all choices of t and 
n. Here b' = e~O) cosht -~, sinht. With I cp), 
exp(in. JR) I cp) will also obey the constraints: dropping 
primes on ~ and b we can then say that the allowed vec
tors I cp) are all those that satisfy 

f dn(~)1i(e -tanht)(t b lexp(iaJ~) I cp)= even function of 

a for all t, 
b = eiO) cosht - ~ sinht, (B3) 

and all transforms of I cp) by the right regular represen
tation of R(3). Let us now use Euler angles for the de
scription of ~ and fj, so that the spherical polar angles 
of ~ are e, </>; let us also write tanh t=COSX, O"';;X"';;'IT. 
Then it is easily seen that (B3) takes the form 

1a2~ d</>(ekO) I exp( - iXJ:) exp(i<f>Jf) exp(iaJ;) I cp) = even in a 

for all X. (B4) 

We now introduce the basis in which the regular repre
sentation of R(3) appears fully reduced. The elements of 
this basis can be written Ijmn) and their basic prop
erties are as follOws: 

(2j + 1)1/2 f20 J2' 
Ijmn) S 2 dl/J d</> 

'IT ° 0 

x i' sin8d8D~n(l/J, 8, </» IA(1/I, 8, </>)), 

° 
IA(l/J, 8, </>)) = ); (2j + 1)1/2D~n(ljJ, 8, </»* Ijmn), 

f;;(n 

exp( - i<f>Jf) exp( - i8Jf) exp( - ilfJJf) limn) 

=~D~m,(IjJ, 8, </»jjm'n), 
m 

exp(ilfJJf) exp(i8J:) exp(i<f>Jf) limn) 

=~ D~n(1/I, 8, </» Ijmn'), 
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Iml,lnl"';;j· (B5) 

The functions D~n(ljJ, 8, </» are familiar from angular 
momentum theory, and the main properties of these that 
we need are 

D~n(ljJ, 8, </»= exp(imljJ + in</»d~n(8), 

(B6) 

The state lekO» corresponds to taking 1/1= 8= </>=0, and 
we can use for it 

I eke»~ =6 (2j + 1)1/2Ijmm). 
Jm 

(B7) 

Then (B4) reads 

6 (2j+ 1)1/2(jmm lexp(-ixJt)ljmm') t r 
d</> 

}mm' 

x exp(im' </> + ima)(jmm' I cp) = even in a for all X, 

1. e. , 

6(2j+ 1)1/2d~",(X)exp(imaXjmolcp)= even in a for all X. 
Jm 

(BS) 

USing (B6) we can make the coefficient of exp(ima) in 
this relation odd in m; alternatively, we can write (BS) 
as 

~ (2j + 1)1/2d~m(X) exp(ima){(jmO I cp) - (- l)m 

x(j, - m, 0 I cp)}=O for all a and X. (B9) 

From the a dependence we get 

~ (2j + 1)1/2d~m(X){(jmO I cp) - (- l)m(j, - m, 0 I cp)}=O 
) 

for all m, X. (B10) 

For fixed m, the d~",(X) for various j constitute a com
plete linearly independent set of functions of X, so that 
we have the simple constraints 

(jmO I cp) = (- 1)"'(j, - m, 0 I cp) for all j and m. (Bll) 

Applying to I cp) a general element of the right regular 
representation of R(3), we have the final statement of 
the constraints in the form: 

(jmn I cp) '" cp~~>, 
cp~".) = (_l)mcp~~). (B12) 

We can look upon the sequence of numbers cp}~) as con
stituting the "wavefunction" of I cp) in the basis (jmn I. 
The constraints then appear in a "local" form here, and 
also are not dependent on parameters like a variable 
point on r. m is the Lorentz-invariant index on cp, and 
is the eigenvalue of - Jf. 

A similar treatment can no doubt be given to put the 
symmetry relations on h",(~), namely Eqs. (1. 13) and 
(2.28), into a simple form; but we will omit the details 
here. 
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An investigation is made of the effect on the dynamics of spontaneous emission of the 
Wigner-Weisskopf atom in an infinite-system limit of various choices of the coupling function or 
form factor describing the atom's interaction with the spectrum of the radiation field; This is carried 
out both for the exact solution to the problem of spontaneous emission, obtained in the earlier 
papers in the series, and for some approximate solutions, also previously considered, in particular 
one based on the Schrodinger equation of the problem and one based on the weak-coupling 
Prigogine-Resibois master equation. The details of the form factor are found, by numerical 
computation of the solutions, to be critical in determining the nonexponential parts of the solutions, 
and these parts are seen to be capable in some cases of dominating the exponential parts, which are 
given only by the values of the form factor near the resonance energy. The approximate solutions 
discussed are found to vary widely in their worth, and one, which yields the exact solution for the 
Wigner-Weisskopf problem, is singled out as being of probable use in the statistical-mechanical 
description of more complicated systems. 

I. INTRODUCTION 

This study is a continuation of previous work of the 
authors, (Refs. 1-5, hereafter referred to as I-V, 
respectively) especially that presented in V. There a 
study was undertaken of the properties of an exact solu
tion of the problem of spontaneous emission of a two
level atom in interaction with a one-dimensional radia
tion field, in the limit where the size of the system be
comes infinite. This exact solution had been obtained 
earlier in III, and for a certain choice of coupling func
tion it was found in V that the solution could be written 
down in closed form, and the resulting expression 
studied numerically. This exact solution was then com
pared with various weak-coupling approximations, and 
it was concluded that in the limit of weak coupling, an 
approximation based On the Schr&linger equation was 
acceptable, whereas for all values of the coupling con
stant in the given choice of coupling function, the predic
tions of the Prigogine-Rllsibois master equation were 
unacceptable, except when the model was ergodic in a 
certain sense. 

To illustrate more clearly the objective of the present 
paper, the main features of the model studied in I-V 
will now be reviewed. The Hamiltonian is 

H = "laa* + "2a *a + L; [~nw>.(ata). + 1)] 
}, 

+ L; (h~ a* a). + h}, a a:), 
A 

in Which "1' ~ are, respectively, the energies of the 
ground state 11) and excited state 12) of the two-level 
atom. The operators a and a}, are defined by the 
following equations: 

491 

a == 11) (21, 

a*= 12)(11, 
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(1) 

(n>.la"lm>.) = [2(n), + 1)]1/2I)kr{m). - n>. -1)= (m A la: In>.). 

The state In>.) is one with n>.(=O, 1,2, ... ) photons in the 
Xth mode, and okr( ... ) denotes the Kronecker delta. The 
states of the sYstem, between which matrix elements of 
the Hamiltonian, Eq. (1), are to be taken, are given by 

li;{n,J> = Ii) II In>.), 
}, 

with i = 1, 2 and n>. ::::0,1,2, .... But, when the problem 
of spontaneous emission is conSidered, that is, when 
the initial state of the system is taken as 

12;{0}) (2) 

then the only states accessible under the evolution given 
by Eq. (1) are 

12; {O}), 11;0,0, .. ·.0,1,0.· .. 0,0), 

Where, if the atom is de-eXCited, there can be only one 
photon present. These states will be written as IN) and 
IX), respectively; X ranges over all modes of the field, 
the properties of which are to be determined by the size 
and dimensionality of the system. If the zero of energy 
is chosen to be the state 

/1; {O}) 

-a state not accessible given the initial condition (2)
then the Hamiltonian can be conveniently rewritten as 

H = liE IN) wi + L; nwA Ix) (x I 
). 

+L; [h}, f2!X)(N! +h:v'2IN>(xl], (3) 
A 

where liE == ~ - "1 is the energy separating the two levels 
of the atom, nw}, is the energy of a photon in the xth 
mode, and h>. is a (possibly complex) coupling function to 
be specified below. As shown explicitly in m, if the 
system is in the state IN) at t = 0, then the probability 
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amplitude for finding the state at time t is exactly given 
by [see Eq. (lIT. 12)] 

1 1 . ( 2Ih>.12j-l (N I \]f(t» = - ~ dz exp( - tzt) z - E - LJ 2( )' 
TTt C >. If z - w>. 

(4) 

where C is a contour above the real axis and parallel to 
it. This result was obtained by solving directly the time
dependent Schrodinger equation for the problem, and it 
is to be noted that Eq. (4) is in the form of an inverse 
Laplace transform integral. 

These remarks bring us to the main point of the 
present paper. In I, it was shown that in order to make 
the model defined by the Hamiltonian, Eq. (1), resem
ble as closely as possible the situation of an electron in 
an atom interacting with a (one-dimensional) field of 
electromagnetic radiation, then the following specifica
tion for the coupling function, h>.' was necessary: 

( 5) 

where L is the length of the system, c is the velocity of 
light, and a is a dimensionless coupling constant which 
corresponds for a one-dimensional system to the fine
structure constant of quantum electrodynamics. It was 
noted in I that this choice led to the ultraviolet diver
gence in the calculation of the probability 1 (N 1 \]f(t» 12 
from the Prigogine-R~sibois master equation. There, 
it was pointed out that this divergence could be aVOided 
in several ways, the simplest being to cut off the diver
gent part of the offending integral [Eq. (I. 41)] at a finite 
upper limit. This possibility was not pursued in I for 
several reasons, not the least of which was that the use 
of this approximation would have necessitated the intro
duction of an additional parameter, namely, a (rather 
arbitrary) bound on the frequency spectrum of the radia
tion field. Instead, in I and II, the coupling function it
self was modified by removing its dependence on the 
wave vector, 1 k>. I. Specifically, the factor 1 k>. 1 was re
placed by its resonant value, E/c, so that the coupling 
function assumed the form 

(6) 

This was enough to ensure the convergence of the ex
pressions derived in I and II as approximate solutions to 
the Prigogine-R~sibois master equation for the diagonal 
elements of the density matrix. A motivation for the 
choice, Eq. (6), was the observation that this procedure 
is effectively what is done in the Born approximation of 
time-dependent perturbation theory in quantum mechan
ics for such problems. It was interesting, then, that in 
going to a representation of the problem based on the 
time-dependent Schrodinger equation in III, the choice of 
1 h>. 12 adopted in I and II, namely Eq. (6), caused the 
summation in the expreSSion for the wave function, Eq. 
(4), to diverge, given the usual choice of frequency 
spectrum 

w>. = I 21Tcn;./L I, n>. an integer. 

Accordingly, in that study and in IV and V as well, to 
avoid the necessity of introducing an upper bound on the 
frequency spectrum, the following expedient was used: 
/ h>. /2 was made proportional to a negative power - p of 
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w>. in such a way that, for w>. = E, it assumed the value 
given by Eq. (6). This led to 

Ih>.12=alf2c1-i'E1·"/Llk>.I" (7) 

and here it is necessary to specify further that 0 < p < 1, 
in order to avoid the infrared divergence in the summa
tion Eq. (4). In lIT, IV, and V, a full study, both analyti
cal and numerical, was made of the consequences of 
Eq. (4) with the Ih>.12 of Eq. (7), for systems both finite 
and infinite in extent. It was seen (in V) that still more 
difficulties arose, connected with the ergodic properties 
of the system. It turned out to be necessary to make 
1 h>. 12 go to zero with 1 k>. 1 in such a way that the quantity 

.6 (2I hd 2/lf 2w>.) 
>. 

remained finite if the "ergodic" property 

I (N I \]f(t» I - 0 as t - 00 

was to hold even for arbitrarily small coupling. A pos
sible choice of 1 h>. 12 that would achieve this was given 
[Eq. (V-32)]: 

Ih>. 12 = 1f2ac2
1 k>. I/L for k>. 'f E/c 

= 1f2ac1 / 2E3/2/L I k>. 11/2 for k>. ~E/c. 

A priori, there is no means of knowing what the effect 
is of making different choices of 1 h>. 12 on the detailed 
dynamics of the system. It would seem to be of some 
interest, then, to investigate this problem in some 
generality, in order to see which of the conclusions 
drawn in I-V regarding the worth of various approxima
tion schemes are true irrespective of the exact form of 
1 h>. 1

2
, as well as to see the influence of this form on the 

exact solution. For dimensional reasons, we may take 
as a general expression for 1 h>. 12: 

/h>.12=(alf2Ec/L)!(clk>.I/E), (8) 

where we impose !(1)= 1 so that Ih,Y shall always have 
the same value at resonance, where in order to avoid 
divergences we require 

!(x) =O(x) as x - 00, 

x!(x) =0(1) as x- 0., 
and where we may also ask that 

!(x)- 0 as x-O·, (9) 

for the ergodic property. We shall be especially inter
ested in the cases 

!(x) = x", 

where, if p is positive, an upper cutoff is employed to 
evaluate the summation in Eq. (4), and, if P is negative 
(but always p> - 1) Eq. (9) is not satisfied. With the 
choicep=l, Eq. (8) reduces to Eq. (5); withp=O, it 
reduces to Eq. (6). 

We shall also be interested in a choice of form factor 
that satisfies Eq. (9). Although that given above [see 
Eq. (V. 32)], for which 

!(x)=x (x 'fl), 

!(x)=X- 1 / 2 (x~l) 

is a possible such choice, it has been thought preferable 
to use instead 
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!(x)=4x/(l +X)2 

which has several advantages of simplicity for the pur
poses of the calculations of the remainder of the paper, 
as well as having a distinctly different analytic form 
from those of the other coupling functions considered. 

In Sec. II, some of the details of the computation of 
Eq. (4) will be given, with special emphaSis on the case 
!(x)=xP (with cutoff). The matter of weak-coupling ap
proximations will be brought up in Sec. ill; Sec. IV con
tains a description of the numerical work performed to 
elucidate the arguments of the paper, and in Sec. V 
these arguments are discussed and conclusions are 
drawn. 

II. THE FORMAL SOLUTION 

We proceed from the exact solution for the probability 
amplitude for finding the system in the state I N) at time 
t, given that the system was in this state at time t=O. 
This exact solution was obtained in ill and is given by 
Eq. (4) of the preceding section. As noted in that section, 
we shall specify the coupling function to be given by Eq. 
(8). 

Our calculation will be performed in the limit of an 
infinite system, for which summations over modes ~ can 
be replaced by integrals over the wavenumber k, with 
the following correspondences: 

(21T/L)L:;- 1. 00

, 
A _00 

wA=clkJ 

In this limit, then, the summation appearing in Eq. (4) 
becomes 

2aEcL:;f(c I kA I/E) 
L A Z - C IkA I ' 

_.!:... 2aEc f+ ood'k 1!(ClkAI/E) 
21T L _00 A Z - c I kA I ' 

= 2aE (oo dwf(w/E) . 
1T Jo Z - w 

Equation (4) now becomes 

(10) 

1 1 dze- id 

<N I ~(t» = - 21Ti cZ - E + (2aE/1T) 10'" dw[j(w/E)/(w - z)] 

(11) 

At this stage it is convenient to introduce the dimension
less variables used in I-V and necessary for the proper 
taking of the weak-coupling limit: 

T= aEt, 

~=z/aE. 

Equation (11) then becomes 

1 ( d~ e-UT 

<N I ~(T» = - 21Ti Jc ~ - a-I + (2/1T) 100 [j(a~' )d~' /~' - ~r 
(12) 

We shall first consider the evaluation of the integral 
in the denominator of Eq. (12) for the case 

!(x)=xP, p=1,2,3. 

with a cutoff at ~'=R/a. It is an elementary result that 
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(lila (a~')Pdl;' 
Jo 1;'-1; 

= ;:{ (al;)" RP-" + (al;)P log (1 _ .B..), 
~ p-n al; 

(13) 

where the logarithm, as a function of~, is defined on a 
plane cut between zero and aR, and is purely real for 
real I; outside the interval [0, aRlo In order to demon
strate more clearly the steps in the evaluation of Eq. 
(12), we consider for the moment only the case p = 1; 
the procedure for p = 2, 3, ••• is exactly similar, and 
only final results will be given in these cases. The de
nominator of the integrand in Eq. (12) is then 

I; _l+ 2R + 2al; IOg(l-~) ." 
a 1T 1T a~ 

(14) 

This expression can be separated into real and imagi
nary parts, so as to determine the nature and location 
of its zeros. Writing 

~ =x+ iy, 

we obtain 

Re(den) 

=x _ ..!.. + 2R + 2ax log 1 1 - ~ /_ 2ay arg(1-~) 
a 1T 1T al; 1T a~ , 

2ay I R I 2ax ( R ) Im( den) = y + -- log 1 - - + -- arg 1 - - . 
1T a~. 1f a~ 

One can see that simultaneous vanishing of both Re(den) 
and Im(den) can take place only if y = 0 and x < 0 or 
x> R/ a (this condition corresponds to requiring 
hermiticity of the Hamiltonian); further, if y = 0, one 
finds that 

1 2R 2ax 1 R 1 Re( den) = x - - + - + - log 1 - -
a 1T 1T ax ' 

Im(den) =0. 

Since 

lim Re(den) = ± 00, 
x .. :t 1lO 

Re(den) 

x 

FIG.!. A sketch of Re(den) versus X. The ~+ and L refer to 
the simple poles on the positive and negative x axis, 
respectively. 
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! PLANE 

o Ria 

FIG. 2. The contour used in the evaluation of Eq. (12). 

lim Re(den) = - 00, 
rRI",' 

lim Re(den) = (2R/1T) - a-I, 
rO 

the behavior of Re(den) as a function of x is (approxi-. 
mately) as shown in Fig. 1 if 2R/1T> a-I (large cutoff or 
strong coupling). There are accordingly at most two 
zeros of the denominator, at U>R/a) and at U<O), 
although the latter does not appear-for a given cutoff
if the coupling is sufficiently weak (see Eq. (V. 29)]. The 
zero ~. always occurs, and prevents the appearance of 
the ergodic property even for small a with this kind of 
cutoff IhAI2. Given this behavior, then, and choosing the 
contour shown in Fig. 2 for the evaluation by Cauchy's 

theorem of Eq. (12), we have that 

2 jRIOl 
(N I iI( r» = + L; . Residue + ~ 

t •• t_ 1T 0 

since the contributions from the large semicircle and 
the two small circles obviously vanish. The residues 
are determined in the usual manner: 

Residue~ = exp( - i~~ r)/D 1( ~~), 

where 

2a I R I 2aR 
D1W= 1 + 1T log 1- (;f + 1T(a~ -R) 

is just the derivative of the denominator (14). Then for 
the "one-pole" case, a < 1T/2R, the result is 

(NI iI( r» 

f R'''' = cos( T~,> + 2a 
D1(U 1T 0 

x cos(xT)dx 
[x - a-I + (2R/1T) + (2ax/1T) log 11 - R/ ax I J2 + 4a2r 

( 15) 

"(Sin(TU 2a jRI'" -z +-
D1(U 1T 0 

x sin(xr)dx ) 
[x - a-I + (2R/1T) + (2ax/1T)log 11 - R/ ax I J2 + 4a2x2 . 

Accordingly, the (diagonal) element of the density, matrix giving the probability of the state IN> as a function of time is 

(16) 

The corresponding results for p= 2,3 for the case that a single pole contributes are given by the following expressions: 
For p=2 

(cos(r~.> 2a2fRI0l rcos(xT)dx )2 
p(r) = D1(U + -;- [x - a-l + (R2/1T) + (2aRx/1T) + (2a2r /1T) log 11- R/ ax 112 + 4(l!4x4 

Q. 

(
Sin( T~,> + 2a2 jR I", X2 Sin(XT) dx )2 

+ D1(U -;- 0 [x-a-I+(R2/1T)+(2aRx/1T)+(2a2x2/1T)logI1-R/axIJ2+4a4x4 ' 

where 

D(~)=1+2aR +4a2~IO 11-~1+ 2a2R~ • 
I • 1T 1T g a~ 1T(a~ -R) 

For p=3 
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where 

We remark that the "two-pole" results are similar in structure to the "one-pole" results, except that there exist 
in the expression for p( T) additional terms which spring from the residue at C Thus, for example, the density matrix 
for p= 1 for the case that two poles contribute is given by 

(
COS(TU COS(TU 2a fRla xcos(xT)dx )2 

p(T)= DI(U + DI(U + 1T [x-a-I +(2R/1T)+(2ax/1T)logll-R/axIJ2+4a2x2 
I) 

+ (Sin( TU + sine TU + ~ fR la X sin(xT) dx )2 
DI(U DI(t) 1T [x-a-I +(2R/1T)+(2ax/1T)logll-R/axlJ2+4a2x2' 

o 

(IS) 

The cases p = 2,3 have similar generalizations. 

Finally, for purposes of a later discussion, we in
clude below the expression obtained for the density 
matrix f( T) derived assuming the form factor 

f(x) = 4x/(1 +X)2 (a < 1T/S). 

The exact solution for the time evolution of p( T) cor
responding to this choice is 

(Sf" cos(~T)a~(a~+1)2d~ )2 
p(T)= -:; (a~ + 1)4 [~_ a-1 _ G(~)J2 + 64(a~)2 

o 

(S[" sine ~T) a~( a~ + 1)2 ds )2 
+ -:; \l (a~+1)4[~-a-I-G(~)J2+64(a~)2 , 

where 

III. USE OF A WEAK-COUPLING APPROXIMATION 

(19) 

As a matter of practical necessity, it is often neces
sary to consider weak-coupling approximations to a 
given formal result. The validity of a weak-coupling ap
proximation to the Schrodinger equation and to the 
Prigogine-Rl!sibois master equation was studied ex
tensively in IV and V for systems finite in extent and 
infinite in extent, and for the particular choice of 
coupling function, Fig. (7). In this section, we investi
gate the validity of a weak-coupling approximation to 
these two equations, but with the dynamics governed by 
the choice, Eq. (S). 

A. The weak-coupling quantum-mechanical solution 

Given the remarks in IV and V, one might reasonably 
expect that a weak-coupling approximation to the time
dependent Schrodinger equation would be in fair accord 
with the results obtained in the previous section. To 
investigate whether this is indeed the case, given a dif
ferent choice of coupling function, we develop a weak
coupling approximation to Eq. (4). 

We make use of the operator identity 

(z -H/m-l=(z -Ho/m-l + (z -Ho/m-I(V/m(z -H/m-l , 

(20) 

where we make the identifications 

Ho= Elaa* + Eaa*a + L: [~liwA(afaA + 1)], 
A 

V=L;(ht'a*aA + hAaat'). 
A 
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I 
Here, V represents the interaction part of the 
Hamiltonian, Eq. (1). By repeated application of this 
operator identity, one can develop an iterative expansion 
of Eq. (20) which leads to the result [see Eq. (llr. 25)] 

(N I '1« t)) = (21Ti)"1 1 dz 
c 

X exp(- izt>(,~ (z - E)"I(N I [(V /m(z -HoIm-l]n IN». 
(21) 

The terms corresponding to n = 0 and n = 1 vanish, so 
we take as our weak-coupling approximation the term 
corresponding to n = 2 in the above expansion. The re
sult is 

(NI 'I«t»= - (21Ti)"1 f dzexp(- izt)(z -E)-I[1 + (z -E)-IL;(z)], 
c 

where 

L:(z) =:6 [21 hA 12/1i2(z - WA)] 
A 

whence, on introducing dimensionless variables, one 
obtains 

<N I '1« T» = - (21Ti)"1 1 d~ 
c 

X exp(- i~T) (~- a-l)"l [1 + C7{~)/(~ _ a-I)], 

U(~) =:6(aE~)/aE. 

Just as in Ill, it is necessary to extract a factor 
exp(- iEt) = exp(- iT/a) if this expression is to be 
meaningful in the weak-coupling limit a - O. Then, we 
have 

exp(iEt)(NI'I«T»= 1- (21Ti)-1 1 d~ exp(- i~T) [u(~ + a-l)le]. 
c 

(22) 

For an infinite system we may put here 

u(~ + a-I) = (2/1T).r d~' (f( a~/)1( ~ + a-l _ ~/)], (23) 

from which it is seen that u(~ + a-I) is analytic every
where as a function of ~ except for cuts along those 
sections of the real interval [- a-I, co] where f( a ~ + 1) '" o. 
In the evaluation of the contour integral in Eq. (22), it is 
thus necessary to take account of these cuts and the 
double pole at ~ = O. The residue at ~ = 0 does not pro
vide an exponential time-dependence as one would wish, 
but rather a linear dependence. As has been seen in III 
[see Eq. (m.27)], this can be properly accounted for by 
notiCing that the expansion in Eq. (21) amounts to 
treating T as well as a as a small quantity, and then 
simply replacing the term of the form 1 + A T by exp(A T). 
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To evaluate Eq. (22) the contour of Fig. 3 is used, the 
integral of Eq. (23) being taken as an analytic function 
of ~ on the cut-plane of the figure. Then there results 

exp(iEf)(Nlw(T)= 1 + a'(a-l) - iTa(a-l ) - (21Titl f d~ 
e' 

x [exp( - i~T)/~2]1a(~ + a-I) 

which we replace by 

[1 + a l (a-I)]exp[-iTa(a-I)]-(21Titl J d~ 
If 

X [exp(- i~T)/~2}a(~ + a-I). (24) 

(Here, a'(a-l) is considered as a small quantity, since 
it is proportional to a. ) 

We have seen that for f(x) =xP, p = 1,2,3, "', we ob
tain [Eq. (13)] 

0(0 = - (2/1T) (~ [(aO"/(p - n)]RP-"+ (a~)Plog(R/ a~ 
"=0 

- 1) + 1Ti( a~)p) (25) 

with the usual cutoff, so that Eq. (24) becomes 

exp(iEt)(N Iw( T) = (1 + aAp) exp(- 2T) exp(iBpT) 

-(21Ti)-11 d~[exp(-i~T)/e](-2/1T)21Ti(a~+I)P (26) 
~ , 

where 

Ap= - (2/1T)(~[nR~"/(p - n)] + p 10g(R - 1) - [R/(R - 1)] 

+ 1TiP) , (26' ) 

Bp= (2/1T)(~ [RP-n/(P - n)] + 10g(R -1)). (26") 

In Eq. (26), C I is the contour of Fig. 4 along which one 
has to integrate the discontinuity of a(~ + a-I). The con
tour (I is an obvious deformation, appropriate to this 
choice of j, of the cut shown in Fig. 3. [For other 
choices of the coupling function j, exactly similar analy
ses can be performed. ] The explicit expression for p( T) 
corresponding to the choice j(x) = xP is 

p(T) ={(1 + a ReAp)exp(- 2T) COS(BpT) + 2ap 

x exp( - 2T) sin(Bp T) + (2/1T) L'" 1 (R-ll d~ 

X cost T / ~)[(~ + a)/~)p + (2a/1T)j: dB 

X exp[- T(R -1) sinB/a] 

X [COSB/(R -1)(COS[T(R - 1) cosB/ a]~(~) (-I)"(R _1)" 

sinnB 

+ sin[T(R -1) cosB/a]ta (~) (-I)"(R -l)"COsnB) 

- [sinB/(R -1)] (COS[T(R -1) cosB/a]± (P)(-I)"(R _1)" 
"=0 n 

cosnB 

- sin[ T(R - 1) cosB/ a]~ (~) (- 1)" (R - 1)" sin nB) J} 2 

X exp(- T(R - 1) sinB/a) 

X [cosB/(R - 1)] (COS[T(R -1) cosB/a]i; (P) (- 1)"(R _ 1)" 
"-0 n 

X cosnB 

- sin[T(R - 1) cosB/a] i; (P) (- 1)"(R - 1)" Sinn8) 
"=0 n 

+ [sinB/(R -1)] (COS[T(R -1) cos8/a] ~ (~) (-I)"(R _1)" 

X sinne 

+ sin[T(R -1) cosB/a] ~ (~) (-I)"(R - 1)" cosnB) ] y. 
(27) 

We may remark here that the weak-coupling approxi
mation used in III and based on Eq. (12)-that which 
was shown in IV and V to compare well for weak-cou
pling with the exact solution for a finite system-gives 
for an infinite system a purely exponential result [see 
Eq. (llI. 23)]. This approximation consisted in writing 
Eq. (12) as 

( 'Ef)(NI,T,( )=- _1 f d~exp(-i~T) 
expt '.I.'T 21Ti ~_a(~+a-l) 

c 

and then setting a = 0 in the expression for a( ~ + a-I). 
One can, of course, retain terms to first (or any 
desired) order in a in thiS, but since a(~ + a-I) is not an 
entire function, all nonexponential contributions to 
exp(iEt)(Nlw(T» will still be neglected in this way. 
However, it is easy to see that the purely exponential 
contribution can be obtained to any desired accuracy by 
this method. In fact, retention of the term proportional 
to a in the expansion of a( ~ + a-I) yields not only the co
efficient [for example, (1 + aAp) in Eq. (26)] of the ex
ponential to order a, but also the correction to that 
orderin the exponent itself. This latter was lost in our 
earlier procedure because T there appeared as a small 
quantity as well as a. 

Finally, to complete this study, we include for com
parison the weak-coupling solution to Eq. (4) corres
ponding to the choice of form factor 

j(x)=4x/(I+x)2 (a<1T/8). 

Here we find that the time evolution of p(T) is given by 

[( 
4a) (4T) 8a 1'/2 p( T) = 1 + -;- exp( - 2T) cos -;- + -;- . 

o 

~ PLANE 

c' 

+{(1 + a ReAp) exp(- 2T) sin(BpT) - 2 apexp(- 2T) COS(BpT) 

+ (2/1T) ~'" 1 (R-ll d~ sin(T /~) [( ~ + a)/ ~]P - (2a/1T) .( dB FIG. 3. The contour used in the evaluation of Eq. (22). 
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-i/a -(R-I/a) R-I/a 

o 

! PLANE 

FIG. 4. The contour used in the evaluation of Eq. (26). 

dOexp(- rsinO/a) 
(5 - 4 COSO)2 

X [cos(r cosO/ a) (- 8 sinO + 5 sin20 - sin 30) 

- sin(rcosO/a}(4 - 8 cosO+ 5 cos20- cos30)] 

+ rl(1 + 4a) exp(- 2r) Sin(4r) + ~lr/2idoeXP(- rsinO/a) 
L 'IT 'IT 'IT (5 - 4 cose)2 

o 

X [cos(r cosO/ a)(4 - 8 cosO + 5 cos 20 - cos 30) 

+ sin(r cosO/ a}( - 8 sinO + 5 sin20 - sin30)] 

(28) 

B. The Prigogine-Resibois master equation 

The time evolution of a system with many degrees of 
freedom can also be described using the Prigogine
Resibois master equation. 6 We consider here a weak
coupling solution to this master equation, subject to the 
same approximations as introduced in previous sections, 
and for the general choice of coupling function, Eq. (8). 
Since the methods for treating the Wigner-Weisskopf 
problem using the Prigogine-Resibois master equation 
have been laid down in I, we can proceed at once to Eq. 
(1. 30), and write 

Po(N, t) = - (2'ITi)-l I dz exp( - izt) Z-l [1 + S (z)]-l, 
e 

where 

(29) 

and Po(N, t) is the probability at time t of finding the 
system in the state IN). With the usual choice of dimen
sionless variables, one obtains the result 

PoW, r) = - (2'ITi}-l Ie d~ exp(- i~rH-l [1 + S(aE~)]. 

If Eq. (8) is substituted into Eq. (29) and the definition 
of ()'(~), Eq. (23), recalled, it is seen that 

S(aE~) = - ~-l [O'(~ + a-l) - 0'(- ~ + a-l)], 

so that 
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Po(N, r) = - (2'ITi)-l f d~ 
e 

X exp(- i~r)[~ - O'(~ + a-l) + 0'(- ~ + a-l)]-l. (30) 

As in previous sections, we shall consider the case 
f(x) = x' explicitly in order to demonstrate the evaluation 
of Eq. (30). Firstly, from Eq. (25), we have 

~ - O'(~ + a-l) + 0'(- ~ + a-l) 

=~+~[~ (a~+1)n-(_a~+1)n R'-n 
'IT n=O p - n 

+(a~+1)PlOg(a:+1 -1) 

- (- a ~ + 1)1> log (_ ~ + 1 - 1) + 'lTi (a ~ + 1)P + 'lTi( - a ~ + 1 )P]. 

where the log functions are defined on the cut-plane of 
Fig. 5. It is seen at once that this expression has a 
zero on the lower imaginary axis, at a point 

~o=-4i+ -- 6--+Plog(R-1)--- +o(a2
) 

16ia (P-1 nRP-n R ) 
'IT n=l p - n R - 1 

= - 4i(1 + 2a ReAp) + o(a2
) 

with Ap given by Eq. (26a). The residue of the integrand 
in Eq. (30) at this point is 

exp(- i~or) (1- d~ [O'(~ + 1/a) - 0'(- ~ + l/a)]lt=t
o
f 

= exp( - i~or) [1 + 2a Re A, + O( a2) ]-1 

= [1- 2a ReAp + O( a 2
)] exp{- 4r[1 + 2a ReAp + O(a2

)]}. 

The coefficient here can be seen to correspond to this 
order in a with that of the square of the modulus of the 
exponential part of exp(iEt) (N I 'IT( r» as given by Eq. (26). 
The exponent itself, however, does not agree in the term 
proportional to a with the "true" value of the exponent as 
obtained by doubling the imaginary part of the zero of 
~ - ()'( ~ + a-1

). This is analogous to the result of Eq. (26), 
where no term proportional to a appears in the exponent. 
For the rest of PoW, r) as given by Eq. (30), it is neces
sary to compute the contributions arising from the dis
continuities of the integrand along the cuts of Fig. 5. In 
the following analYSiS, we have chosen (1 <) R~ 2, since 
this is the choice made in the subsequent numerical work 
on Eq. (30). The case R > 2 can be treated in the same 
way. It is readily seen that the contributions to PoW, r) 
from the cuts are 

_(2'ITi}-l l~/''' d~exp(-i~r){[~+Gm]-l[~+G(~) 

+ 4i( a~ + 1)' + 4i( - a~ + 1)P]-1}, 

-i/a -(R-lIa) R-lla Iia 

o 

FIG. 5. The contour used in the evaluation of Eq. (30). 
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FIG. 6. A plot of p(T) versus T determined from the 
Schr<Sdinger equation. The calculations were performed on 
Eqs. (16) and (17) with no weak-coupling approximation for the 
choice of parameters, a = 0.1 and R = 1. 5. 

-(21Titl J-OHI/O!. d~ exp(-i~T){[~+G(~) 
-1/0!. 

+ 2i(a~ + 1)']-1 [~+ GW + 2i(a~ + 1)1'+ 4i(- a~ + 1)I']-1}, 

- (21Ti)-1 flO!. d~ exp(- i~T) {[~ + G(~) 
(R-lI/O!. 

+ 2i( - OI~ + 1)']-1 [~ + G(~) + 4i(0I~ + 1)' + 2i( - OI~ + 1)']-1}, 

- (21Ti)-1 r' d~ exp(- i~T){[~ + G(~)]-1 [~+ G(~) 
1/0!. 

+4i(OI~+lY+4i(-0I~+1)P]-I}, (31) 

where G(~) is the function, real for real ~ 

Gm=!(~(OI~+l)n-(-OI~+l)n R,-n 
1T n-O p-n 

+ ( 01 ~ + W log I 01 ~ ~ 1 - 11 

- (- 01 ~ + W log I _ ~ + 1 - 1 I)· (32) 
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The final result is then 

PoW, T)=(l- 2a ReA,) exp[- 4T(l + 201 ReA,)] + C(T), 

(34) 

for this approximation. 

IV. NUMERICAL RESULTS 

The expressions derived in the preceding sections for 
p( T) = 1 (N 1 >It( T» 12 or p( T) = PoW, T) have been computed 
numerically for various choices of the coupling param
eter 01 and of the coupling function (form factor) f of Eq. 
(8). The first series of calculations was based on Eq. 
(12) for the exact solution [with use of the material fol
lowing Eq. (12) in Sec. II]. Figures 6-9 display graphi
cally the results for f(x) = x' (p = 1, 2) with cutoffs R 
= 1. 5 and 2, and for "weak-coupling, " 01 = 0.1, and 
"strong-coupling, " 01 = 0.8. The weak-coupling cases 
display very little of the no~ergodicitywhich, as has 
been seen, is due to the occurrence of the poles ~" of the 
denominator of the integrand of Eq. (12), and which al
ways must arise with the form factors in question. In 
fact, all the nonexponential contributions to p( T) can be 
seen to be relatively unimportant for 01=0.1, although 
the case p = 3, especially with the larger (R = 2) cutoff, 
already shows quite noticeable nonexponential effects. 
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FIG. 7. A plot of p(T) versus T determined from the 
SchrBdinger equation. The calculations were performed on 
Eqs. (16) and (17) with no weak-coupling apprOximation for the 
choice of parameters, a =0.1 and R=2.0. 
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FIG. 8. A plot of pIT) versus T determined from the 
Schriidinger equation. The calculations were performed on 
Eqs. (16) and (17) with no weak-coupling approximation for the 
choice of parameters, 0' = 0.8 and R = 1. 5. 

The se are much magnified for a = O. 8, to the extent that 
(see Fig. 9) decay has become very slow, with large 
oscillations the predominant feature. The results ob
tained in V, for the form factor p= -1/2 (no cutoff), are 
also included in Figs. 6-9 for further comparison. The 
oscillations in these solutions, although of the same 
nature as those for p = 1, 3, are considerably less 
marked, especially for the larger choice of a. The case 
p = 2 has not been shown in the figures, since it turns 
out on calculation to be entirely intermediate to the 
cases p= 1 and p= 3. Lastly in this series, p(T) has 
been plotted in Fig. 10 for 

f(x) = 4x/(1 +X)2 

and a = O. 1. This case is actually ergodic, that is 
p( T) - 0 as T - 00. Here the decay is not strictly ex
ponential, but all other contributions have become minor, 
and there is no visible Sign of oscillation. 
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FIG. 9. A plot of piT) versus T determined from the 
Schrodinger equation. The calculations were performed on Eq. 
(18) and the corresponding "two-pole" generalization for p = 3 
with no weak-coupling approximation and for the choice of 
parameters, 0' = 0.8 and R = 2. O. 
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FIG. 10. The SchrBdinger exact solution and the associated 
weak-coupling approximation for the intermediate form factor, 
fix) = 4x/(l + X)2 for 0' = 0.1 The curve - - - - gives the time evo
lution of piT) determined using Eq. (19), the curve -. -. - gives 
the time evolution determined using Eq. (28), and the curve 
---- gives, for comparison, the exact dynamics correspond
ing to the choice p = - 1/2. 

The next series of calculations was based on Eq. (24) 
for the weak-coupling quantum-mechanical solution. The 
results are given in Figs. 11 and 12, for the same 
choices of the coupling function as in Figs. 6-9, but 
only for a = O. 1, since a = O. 8 is too large for weak 
coupling to be a sensible approximation. These solutions 
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FIG. 11. The Schriidinger weak-coupling approximation for the 
form factor #. The calculations were performed on Eq. (27) 
for the particular choices p = 1,3 with 0' = 0.1 and R = 1.5. We 
include as well the curve corresponding to the exact solution 
for p= -1/2. 
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FIG. 12. The Schrodinger weak-coupling approximation for the 
form factor~. The calculations were performed on Eq. (27) 
for the particular choicesp=I,3 witha=O.1 andR=2.0. We 
include as well the curve corresponding to the exact solution 
for p=-1/2. 

are of course ergodic by construction, and further, as 
seen clearly in the figures, p(O) need not in general be 
unity. These are not the only discrepancies from the 
exact results however, for it appears that the oscilla
tions in the tail of the decay are much reduced in this 
approximation scheme. For the case p = - 1/2, the re
sults from V are again plotted for comparison; again the 
oscillations are less important than for p= 1, 3 and are 
reduced relative to the exact solution. Figure 10 shows 
the result for 

I(x) = 4x/(1 + X)2 

and, as in the exact solution, no oscillations can be 
seen. 

The last set of calculations is based on Eq. (30) and 
the subsequent material of Sec. ill giving the solution to 
the weak-coupling Prigogine-R~sibois master equation. 
The results appear in Figs. 13 and 14, again for fix) 
=x'p=1,3, R=1.5,2, andC\!=O.1. Here, the solutions 
are no longer confined between zero and unity, as noted 
in III. In fact, they bear little other than gross qualita
tive resemblance to either the exact solutions or the 
quantum-mechanical weak-coupling ones. It was seen in 
V that this is true also in the case p = - 1/2, and so the 
results for that case have not been reproduced here. 

V. DISCUSSION 

There have been two main points at issue in this paper. 
The first was the extent to which the choice of the 
coupling function I affected the dynamics of spontaneous 
emission for our model, and the other was the worth of 
the two weak-coupling schemes discussed with various 
choices of I. It should be mentioned here that the cutoff 
parameter R that has been used has been thought of as 
intrinsic in the definition of I, and in no way as a physi-
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FIG. 13. The Prigogine-R~sibois weak-coupling approxima-
tion for the form factor x'. The calculations were performed 
on Eq. (34) for the particular choices p = 1 (full1ine) and p = 3 
(dotted line) with a = 0.1 and R = 1. 5. 

cal parameter. Although in the corresponding problem 
in solid-state theory-spontaneous emission of 
phonons7_a physical (Debye) cutoff exists to bound the 
excitation spectrum, such matters have not concerned us 
here; what was of interest was to determine how I, as 
opposed to its value at resonance, affected the model's 
predictions. The choices of I with cutoff are clearly not 
continuous functions over the excitation spectrum. This 
has not impeded the calculations for p(r), since I ap
pears only in integrands (in the infinite-system limit). 
In fact, if one I is given, another differing from it only 
on a set of measure zero will yield the same results; 
that is, the value of I at an isolated point (even at reso
nance) does not matter, as decay proceeds only via the 
interaction with a continuum of states. On the other 
hand, intervals of the spectrum where I vanishes in
fluence the dynamics greatly: it has been seen that this 
aspect of the cutoff form factors gives rise to isolated 
modes and the related nonergodicity, and also to branch 
cuts in the integrands involved in calculating p(r), with 
consequent significant nonexponential contributions to 
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p(T). If it were physically reasonable (which it is not in 
quantum mechanics) to consider an excitation spectrum 
extending from - 00 to + 00 and a form factor f not van
ishing over all this range, then not only would p( T) be 
ergodic, but it would be possible for it to be purely ex
ponential for certain choices of f. 

The numerical calculations have shown that, although 
of course the exponential part of p( T) depends, to lowest 
order in a, only on the value off at resonance (or rather 
in the neighborhood of resonance), the nonexponential 
parts depend critically on the details of f, and may well 
be so large as to dominate the exponential part com
pletely. But the better behaved f is, in the sense' of not 
vanishing on the excitation spectrum, being continuous 
or even analytic, and obeying Eq. (9) at x=O, the less 
substantial the nonexponential parts become. In fact, with 

f(x) = 4x/(1 + X)2 

they could hardly be detected graphically. It seens 
permissible to draw the conclusion that, if in a physical 
situation only exponential behavior is observed, great 
caution must be exercised in describing the system by a 
model involving a cutoff or any other irregularity in 
the interaction form factor. 

The quantum-mechanical weak-coupling approximation, 
Eq. (24), appears to be reasonable in a variety of cases. 
Over the whole range of f' s treated in this paper, it has 
been seen that the exponential part of the approximation 
is in very good accord with that of the exact solution [in 
fact, as noted at the end of Sec. ilIA, by taking suffi
ciently high powers of a in cr(~ + a-I) one can have arbi
trary accuracy], and that the nonexponential parts be
have in much the same way as in the exact solution, but 
are consistently underestimated. Again clearly those 
!'s yielding small non exponential parts give the best 
results. 

The solutions obtained from the Prigogine-Rllsibois 
master equation are quite different. By virtue of the 
fact that Eq. (34) is at best a weak-coupling equation, 
arbitrary accuracy in the exponential part is not avail
able. The nonexponential parts are very badly given by 
this equation: Not only do they yield values of p( T) out
side [0,1], but the resemblance they bear to the exact
solution results, which had been seen in IV and V to be 
only qualitative, seems to disappear entirely with the 
less well-behaved!' s considered here. 

Another possibility exists for a weak-coupling ap
proximation that may in general be superior to both of 
those considered in this paper. In ill, it was pointed out 
that for our model, the exact solution was given by the 
following equation [see Eq. (ill. 15)]: 
a at (NI 'l1(T) =- iE (NI'l1(T) + fat dT.C(T) (NI 'l1(t - T), (35) 

where C( T) is the inverse Laplace transform of the ex
pression 

1/J(Z) = (i1i)-1 t <NIHI[(Ifz-HotIHJ" 1N>lrr 
n=l 

the suffix "irr" meaning that when the matrix element is 
expanded using the completeness relation 

the term IN> (N I is to be omitted. Equation (35) was de
duced in ill from the Schrodinger equation as an exact 
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result, provided that the series defining 1/J(z) converges, 
by a method entirely analogous to that given in I to de
rive the Prigogine-Resibois generalized master equa
tion. That equation, too, is an exact result if conver
gent when taken to all orders, and it has just been l;Ieen 
how poor is the lowest-order approximation to it. On 
the other hand, Eq. (35) gives the exact Eq. (4) as its 
lowest-order solution with the Hamiltonian Eq. (3), all 
other orders vanishing (see Sec. II of III). Thus for this 
one model at least the perturbative scheme defined by 
Eq. (35) is the best of the possibilities found so far. 

The authors would like to suggest that the situation 
described above may be a rather general state of affairs. 
Master equations, Markovian or not, provide extremely 
useful approaches to the description of weak-coupled 
systems, but it is evident that they do not afford a sen
sible way to study how approximate solutions arise from 
the exact dynamics of a system, simply because their 
lowest orders give the details of an exact solution in a 
spurious manner. On the other hand, especially since 
even so crude a result as Eq. (24) yields a recognizable 
approximation to. the time evolution for our model with 
quite ill-behaved form factors, it seems permissible to 
conclude that Eq. (35), which is a better perturbative 
scheme than Eq. (24) for the same Schrodinger equation, 
will often give a good description of the dynamics as
sociated with a Hamiltonian not permitting an exact 
solution to be found in closed form. Clearly there are 
Hamiltonians for which the approximations given by Eq. 
(35) will be as pathological as those here derived from 
the master equation but, for some systems at least, by 
means of Eq. (35) a proper understanding should be 
available of the detailed dynamics and the relevance of 
its various aspects to the problems connected with the 
taking of the thermodynamic limit, the appearance of 
irreversibility or ergodicity for certain observables 
and so forth to an extent much greater than that provided 
by a master equation. More complicated systems in
volving the interaction of atoms and radiation than the 
simple Wigner-Weisskopf model of this series of papers 
are at present being studied by the authors from this 
point of view in the hope of resolving some of the yet 
outstanding conceptual difficulties of nonequilibrium 
statistical mechanics. 
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We analyze the charged scalar Low equation and show that, in this case at least, the breakdown of 
the standard flxed point theorems occurs because of their inherent weakness rather than through 
some topological change in the structure of the family of solutions. We also show that unless we 
reformulate the equation the Schauder principle only handles the basic solution, that solution 
without CDD poles. We discuss methods, alternative to the N / D method, to handle the other 
solutions. 

1. INTRODUCTION 

The question of the feasibility of the S matrix program 
has been studied in some detail. 1-6 The results, how
ever, have been somewhat disappointing, 3,6 in that exis
tence of solutions of the various proposed models has 
been proved only for weak coupling. In particular, 
Warnock1 and McDaniel and Warnock2

,3 have proved 
existence of solutions to the TTN static Low equation7 only 
for coupling constant less than about 0.003 compared to 
the 'frN coupling constant value of about O. 2. 

It is the purpose of the paper to gain some inSight into 
why the standard fixed point theorems6

,B,9 fail at such 
low coupling constants. We apply the theorems to a 
soluble version of the Low equation, the charged scalar 
model, and compare the results with the exact solu
tions. 10 We conclude, in this model at least, that the 
theorems fail not because of any topolOgical change in 
the structure of the family of solutions but through in
herent weakness of the theorems. We also show that the 
Schauder theorem gives no improvement on the contrac
tion mapping theorem, there being only one fixed point 
in each case. This fixed point corresponds to the basic 
solution, that solution withoutCDD poles. 11 The best 
bound obtained is about 0.2 whereas the basic solution 
is well defined up to .\ = 1, when a second sheet pole 
enters the physical sheet. The baSic solution then and 
thereafter ceases to be a solution. 

To gain access to solutions other than the basic solu
tion we reformulate the equation to incorporate the sin
gularity structure of solutions with CDD poles thus ex
cluding the baSic solution. The contraction mapping 
principle then generates an iterative solution for any 
assumed Singularity structure compatible with unitarity. 
This is again only possible for low values of the coupling 
constant. To move along the trajectories of these solu
tions in function space with increaSing .\ one must 
iterate the contraction mapping iteration6 or use the 
more powerful Frechet derivative method. 6 What our 
reformulation has accomplished is the vital first step of 
constructing a solution with !CDD pole, gaining the nec
essary access to the solution trajectory. 

We collect the fixed point theorems for convenience in 
the Appendix. 

2. EXISTENCE OF SOLUTIONS WITHOUT COD POLES 

The Low equation has the form 
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f. (w) =p (w) +.! f" dW'P(w,)(lfq(w') I ~ + L;A l/e(w') 1
2
), 

'" '" 'fr.1 w'-w-t€ 8 ",8 w'+w 

a=1,2, ... ,n, (2.1) 

where P",(w) is the sum of bound state poles, p(w) is the 
product of the centrifugal barrier factor and a cutoff, 
and A"'8 are the elements of the crOSSing matrix A. The 
charged scalar model is defined by the identification 
n=2, .\",=.\, P",(w)=.\w-1, A=(~'~), p(w)=(w2 _1)1/2. 
The equation expressed in terms' of the variable t = w-1 

is then 

J.(t) =.\ + TT-1 t du(1- tf)1/2 [/f.(u) 1
2/(t - u - iE)]:; N(jJ, 

(2.2) 

where f.U) =d-1f1(W) andf2(w)=-f1(-w). Equation (2.2) 
can also be expressed as an equation for the discontinu
ity function (J = If. I 2: 

(J=f.f_, 

f. =.\ + 11" -1 i~ du(1- U2)1/2 [u(u)/(t - u - iE)], 

f- =.\ + 11"-1 i~ du(1- U
2)1/2 [(J(u)/(t - u + iE)]. 

(2.3a) 

(2.3b) 

(2,3c) 

We first determine what information is provided by the 
Schauder fixed point theorem if we take the closed con
vex set K of that theorem to be the set of functions de
fined by the constraints; 

If(t)I~A, Itl~l, (2.4a) 

If(1) -f(2) 1 ~Blt1 -t21", -1.;; tut2';; 1, 0 <J.1. <1. 

(2.4b) 

The theorem applies if the operator N of Eq. (2.2) is 
completely continuous and maps K into itself. The first 
property has been proved by Warnock1 using the method 
of Pogorzelski. 9 A range of values of for which K is 
mapped into itself is given by the following constraints: 

1.\ I +M1A 2 +M2 AB';;A, (2.5a) 

(2.5b) 

where M I are known constants. MuM 2> M 3 are easily 
found to have values 1, 4(11"J.1.)-\ 2.4, respectively. The 
fourth constant, M 4 , is the hardest to calculate since it 
is a product of the intricate analysis of the Privalov 
lemma. 12,13 Its value, about 17, is large compared to 
the other constants of (2. 5). An upper bound on 1.\ I for 
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B 

FIG. 1. The region in (A, B) space defined by the constraints 
(2.5). 

which the constraints (2.5) are consistent can be found 
immediately by noting that the boundary of the region 
(2.5b) is a hyperbola with asymptote A =M;l and the 
boundary of (2. 5a) is a hyperbola with asymptote A = 0 
that intersects the A axis at the two pOints (Fig. 1): 

A =a.=[1 ±(1-4Ml /A/)l/2](2Ml )'! (2.6) 

An upper bound is obtained by equating a. and M;l. In 
fact this is a good approximation to the least upper 
bound on I A I since the boundary of (2. 5b) has a sharp 
corner in the first quadrant of the A -B plane. The best 
bound turns out to be I A I = 0.05. 

We can check whether the theorem is an inherently 
weak theorem since we know the exact solutions. In fact 
the general solution of (2.2) islo 

t.(!) = ([R(t) - t] - i(l- ta)1/2}'1 (2.7) 

or in terms of the discontinuity function 

(2.8) 

where 

(2.9) 

A,=a,b,·2, (B/=b/· l
) is the reSidue (position) of the 

ith CDD pole in the variable w. For convenience we 
label the discontinuity function solution with n CDD poles 
with parameters {(A/,B/)}, i=I, .•. , n by (1"({(A j ,B,)}). 
(1" ({(A "B ,)}) is the discontinuity solution only for certain 
values of the parameters {(A /J B I)}' 

In fact, one can prove the following results: 

(i) (1"({(A/,B j ») is not a solution of more than one B, 
satisfies the constraint I B / I < 1. 

(ii) If there is one B, such that I B / I < 1 then 
(1"({(A/,B,)}) ceases to be a solution for suffiCiently 
small A since a second sheet pole eventually comes onto 
the physical sheet. (1" ({<A " B ,)}) then ceases to be a solu
tion of the equation. 10 

(iii) For all solutions a second sheet pole comes onto 
the physical sheet for sufficiently large values of I A I 
then ceasing to be a solution. 

It may appear at first sight that the solutions (2.8) 
form a continuum in norm, but this is in fact not so. The 

J. Math. Phys., Vol. 15, No.4, April 1974 

503 

convergence of the solutions (1"({<A,. B,)}) , n > 1, as A 
tends to zero is nonuniform. In fact, there is a con
fluence on the real axis of each of the resonance pole 
pairs of u"({<A,,B,») as A tends to zero. «"({<A,,B,)}) is 
of order A almost everywhere, the exceptions being in 
a neighborhood of width of order A near each CDD pole 
position. In each of these neighborhoods there is a point, 
determined by the condition R(t) = 0, where 0'" = 1. 
Hence, defining 

A(u", A) = sup / a"(A, t) I 
tEI·l,l} 

for a discontinuity function a" with n CDD poles, 

limA(a", A) ~ 1 for n > 1 and limA(uo, A) = O. 
1.-0 1.-0 

Thus there is separation in absolute value between the 
lowest member of the family of solutions and all the 
others, the ranking being in terms of subfamilies de
fined by the number of CDD poles. In Fig. 2 we plot the 
lower boundary L of the curves A (a", A) for n > 1 and the 
curve A(uo, A). In addition, we plot the region R defined 
by the Schauder analysis. It is clear from this figure 
that the Schauder analysis gives us information only 
about the existence of ao, the basic solution. It is not 
surprising therefore that the bound on I A I is little better 
than the value one obtains by applying the contraction 
mapping principle to Eq. (2.2). It is also clear that the 
bound on I A I has nothing to do with any structural change 
in the family of solutions. The only type of structural 
change that can occur is when a second sheet pole of a 
solution moves onto the physical sheet. This occurs to 
the basic solution at A = 1. 

There have been two proposals 6 in the literature for 
improving the rather weak bound on IAI for ao' The 
first is to use the contraction mapping prinCiple to ex
pliCitly construct solutions for A up to the bound for the 
ball centered at the origin of the function space. One 
then uses the solution at the maximum bound as the 
location of the center of the ball to which one applies 
the contraction mapping prinCiple, in the expectation 
that one can move along the trajectory A(ao, A) in these 
successive movements. The process eventually breaks 

.05 50 

FIG. 2. The region R in lA, N space defined by the constraints 
(2.5). 
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down because of the weakness of the contraction mapping 
principle, long before the solution Uo has unbounded 
norm at ~ = 1. In fact, the maximum norm obtained by 
this method is about ~ = O. 08. More powerful methods, 
such as the Frechet derivative method, would work 
throughout the trajectory since no bifurcation occurs. 6 

The second proposal is to reformulate the equation. 
Two possibilities that have been discussed2

•3 are the 
inverse amplitude equation and the N/D equation. Both 
give improved bounds but the improvement is not dra
matic for the charged scalar equation. The immediate 
cause for the low bounds on I ~ I is the fact that the pa
rameter M4 in expression (2. 5) is large. M4 arises 
from the Privalov bounding procedure for Holder
continuous functions. The space of Holder-continuous 
functions is larger than we require since we know that 
the solutions u are infinitely differentiable. It seems 
worthwhile, therefore, to examine the possibility of 
embedding Eq. (2.3) in spaces of analytic functions. 14 

The space of functions continuous on and analytic in 
the closed disk DR of radius R > 1 centered at the origin 
of the t Argand plane is a complete Banach space 81 if 
endowed with the norm 

lIuli = sup / u(z) /. (2.10) 
1.leR 

This space is isomorphic to a subspace 82 of the Banach 
space of continuous functions defined on the boundary C R 

of DR' endowed with the usual sup norm. This subspace 
is defined by the constraints 

1
2v • 

o j(B) exp(znB)d8 =0, n=l, 2, ... (2.11) 

The isomorphism is the identification of an analytic 
function with its boundary values. The constraints (2.11) 
lead to the property 

f dz'j, (z') 0, z outside CR , 
cR z -z 

(2.12) 

where without risk of confusion we have written j(Re I8 ) 

= j(8). Relation (2.12) is obtained from the constraints 
(2.11) on multiplying the nth constraint by z-(n.1) and 
summing. Relation (2.12) is the necessary and sufficient 
condition12 that 

. 1 f. dz'j(z') hm -2 -. =,~~ 
'~'o 1fZ CR Z - Z 

zoECR 

The proof is as follows: 

(2.13) 

i dz,'f(z') i dz'j(z') -1 dz'j(z') , 
-~::"-':';'2'-:'" z within C R , 

cR z - Z CR Z' - Z cR Z' - R z 1 

= i 12
• d8j(8)P(R, 8;r, cp), (2.14) 

o 

where z=reif/l, r<R and 

P(R, 8ir, cp) = (R2 - r2)/[R2 +r - 2Rrcos(8 - cp)]. 

(2.15) 

Hence 

1 L dz'/(z') 1 (2< 1 
~ , j(cp) 2 In d8P(R, 8ir , cp) + 2 

m C
R 

z - Z 1f 0 1f 

1
2r 

X 0 d8P(R, 8i r , cp)[j(8) - f(cp)]· (2.16) 
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The first integral in the limit has value 21f and the sec
ond by the usual €, 0 analysis has value zero. The oper
ator N with action 

2 • 1 12• Re I8u(Re I8
) (Nu)(z)=f.(z,u) -2zp(z)f.(z,u)-2 R i9 dB, 

1f oe -z 

(2.17) 

where 

(2.18) 

maps 82 into 81" This is clear except possibly for the 
points ± 1. One can show, however, by straightforward 
distortion of the contour techniques1S that if one takes 
the function Nu around either end point one ends up with 
the original value. In the limit z - Rei. we obtain an 
equation on 82 : 

a(Relf/l) = (Nu)(Relf/l) 

= f:(Re lf/l, a) - 2ip(Re l f/l)f.(Re l f/l, a)a(Relf/l). (2.19) 

Equation (2.19) is equivalent to Eq. (2.3) since if we 
define 

1 f2' Re I8a(Re I8
) 

a(z)=2- R i8 d8 
1f 0 e-z 

(2.20) 

then (Na)(z) = u(z). Evaluating expression (2.17) with z 
on the real segment one obtains Eq. (2.3). 

We cannot use the Schauder principle on the operator 
N of Eq. (2. 19) since N is not completely continuous. 
We have to use the contraction mapping principle or a 
slightly stronger variant, Theorem 3 of the Appendix. 
It is clear that the operator N~ corresponding to the first 
term of the right-hand Side of Eq. (2.19) is completely 
continuous. We will find bounds on I~I to ensure that 
N2=N -Nl is a contraction mapping on the ball B. 
={al lIall';;M} and that if "u"2EBM then so does N 1"1 

+ N2"2' Theorem 3 then guarantees us at least one fixed 
point in Bjf' The bounding procedure is straightforward 
using the maximum modulus principle. The bounds are 
in fact 

(2.21) 

and 

(2.22) 

where 

a = suo 1f-1f1 dUp(u) / z - u /-r, b = (R2 +1)1/2, 
zE6R -1 

The region (2.21) is denoted in Fig. 3 by the single 
shaded region. The parameters NOl'~" are given by 

N .. =(a2 +2C>-1, ~m =H(a +b) - (a 2 + 2c)1/2)(b2 +2ab - 2c)-1. 

(2.23) 

The contraction mapping constraint (2. 22) denoted by the 
straight lines in Fig. 3 is not binding. The best result 
is obtained for R = 1. 5 and the bound on I ~ I is O. 15. If 
R gets smaller (larger) a and c (b) gets larger. There 
is a trade off pOSition about R = 1. 5. 
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FIG. 3. The region in (M, A) space defined by the constraints 
(2.21), (2.22). 

One can get improved bounds if one takes different 
regions of analyticity about the line segment [-1,1]. 
For example if we take an ellipse with foci ± 1 and major 
and minor axes 1.32, 0.86, respectively, then the bound 
is improved to 0.18. Thus the analytic space technique 
certainly improves the I A I bound but not dramatically 
so. The amount of hard analysis required is however 
drastically reduced. 

Similar techniques can be applied to the Eq. (2.2) for 
f.U). We consider the two functions f.(z),fJz) analytiC 
in the unit disk whose values on the line segment [- 1, 1] 
are the functions f.(t). f.(z) are related by the complex 
conjugation relation f.(z) = f.(z). Because of the analyti
city assumption we can distort the integration contour 
of (2.2) into the upper boundary CI• of the unit disk: 

f.(z) =A + ~ r dup(u) f.(u)fJu). Je l • z - u 
(2.24) 

If we evaluate this expression on the boundary of the unit 
disc we obtain coupled equations for i.(e), where l.(e) 
=-f.(e i9). We embed this equation in the space S2 with 
R =1. We can use the relation (2.13) to rewrite Eq. 
(2.24) as 

f.(z) = A - f ( dUp(u) f.(u)f.(u) + f f dUp(u) f.(u)f.(u) 
JC

I 
z -u Je

l
• z-u 

= A +2ip(z)f.(z)f.(z) +.!. r dUp(u) f.(u)f.(u) , (2.25) 
1f Je

l
. z - u 

where CI• is the lower half of the unit circle C I traced 
in the anticlockwise direction. Hence we can use (2.24) 
for evaluatingf.(z) on CI . and (2.25) on CI •• With this 
procedure the integrals involved are not singular other 
than at the end pOints. 

The nonlinear operator implied by the relations (2. 24) 
and (2.25) maps the ball BM ={fl Ilfll..::; M} into itself if 

(2.26) 

where 

a= sup.!. ( dUp(u) =21/2, ;;2= sup Ipl =21/2. 
zEC I• 1f Je l • I z - u I 'Eel. 
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The maximum bound on IAI is Ha +2b)"I=0.06. The 
contraction mapping bound is again not binding. This 
bound is only marginally better than the Holder analysis 
bound. It is inferior to the C1 analysis principally be
cause the ii integral has end point singularities. The re
gion (2.26) is depicted in Fig. 4. 

None of the techniques discussed so far give informa
tion about solutions other than the basic solution C10 ' In 
the next section we discuss methods for gaining access 
to these other solutions. 

3. EXISTENCE OF SOLUTIONS WITH COO POLES 

USing spaces of analytiC functions it is easy to incor
porate simple Singularity structure. Suppose, for 
example, that f.(z) has one simple pole in the upper half 
of the unit disk. To be precise suppose J.(z) =f.(z) - [g/ 
(z - a)] is analytiC in the unit disk, z = a lying in that 
disk. In distorting the contour of Eq. (2.2) into CI • one 
picks up the reSidue from the pole obtaining an equation 
for 'J.(z): 

- 1 ( ~ ~(a -ii)( 1 - -) - J f.(z) = A + 1T Je
l

• z _ u L;;::a 2ip(a) + f.(a) + f.(u) 

fI(a - ii)( 1 -) - ] x ~ u _ ii 2ip(a) - f.(a) + f.(u) (3.1) 

and, for consistency, an equation for g: 

g=(a -ii}{[2ip(ii)]·1 +J.(a)}. (3.2) 

Evaluating expression (3.1) on the unit circle and at 
pOints z = a, a we obtain coupled equations for 1.( e i9), 

!.(a), l.(a) using the fact thatl.<e i9)=1.<e· i9). 

The equivalent equation for the analytiC part of the 
discontinuity &(z) =- C1(Z) - [G/(z - a)] - [G'/(z - a)] is 

cr= f.2 _ 2if.pcr _ 2iG (P(z)f.~z~: p(a}f.(a») 

_ 2iG (p(z)f'(z) - p(a)ft('a»), 
\ z-a 

(3.3) 

"t-M 

/ ~ 
./ """ / "" / \ 

I \ 
~ l 
\ 71 

'" 17 I 
................. V I 

....... --" I \. 

.06 
, 

FIG. 4. The region in (M, A) space defined by the constraint 
(2.26). 
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where I. is given by (2. 3b) and G is given by 

G = [(I2(a, if) 2i~(a) -I2(a, ii) 2i!(af [XI2 (ii, ii) - Xl2(a, ii)] 

+ [11 (a, u)/2(ii, ii) -II (if, u)I2(a, a)]]A-l. (3.4) 

11> 12 , A are given by 

I (- -) 1 11 dup(u) (3.5a) 
2 a, a = 1T ( )( ) , 

-1 a -u u-a 

I (- -) _! i 1 dup(u) U(u) 
1 a, (T - , 

7T -1 a-u 
(3.5b) 

A = 12 (ii, a)12(a, ii) -I2(a, a)I2(a, a). (3.5c) 

One can straightforwardly show that the Eqs. (3.1), 
(3.3) are equivalent to the original Low equation if we 
use Holder continuous functions or functions continuous 
on and analytic in appropriate disks. 

The equation set for (T is somewhat difficult to analyze 
since the undistorted contour lies close to the poles. We 
therefore consider the set (3. 1), (3.2) analyzing it with 
respect to the space S2XC!:, the Cartesian product of the 
special subspace of functions continuous on the boundary 
of the unit disk and the space of complex numbers. In 
order to simplify the analysis we will take the pole to 
move with i\.. In fact, we will take a = 0.25 + O. 5ii\.. The 
reason is that as i\. tends to zero the complex conjugate 
Pole pairs of the discontinuity function coalesce on the 
real axis. Hence with our choice of trajectory we will 
be sure of a solution at i\. = 0, namely the trivial solution 
1.(z) =0. To facilitate evaluation of h(z) on C1+ we use 
the device used to obtain (2.25) from (2.24). In fact, 

J.(z) =!. f dup(u) (...:L + l+(u~(~+ f-<u)\ + i\. -E(z), 
7T Jc z-u u-a ~ u-a 'J 

1- (3.6) 

where 

E(z)-2i -/. -p(z) + p(a) + p(z) ) 
- gg\(z - a)(z - a) (a - if)(Z - a) (a - a)(z - a) 

_ 2ip(z)J.(z)lJz) + 2ig&(a)l<~) _-:(z)l(z») 

+ 2i"g (p(if)l+~ii~ ~ p(z)J.(z9. 
The ball 

BMN = ((1.<e I9).l.<a» 111.<eI9
) I ~M, l'<ii)" N} 

is mapped itself if 

Ii\. I + Ii\. 12 (N +0.52)(5. 84M + 5.16N +4. 6NI i\.1) 

(3.7) 

(3.8) 

+ 1i\.I(N+0.52)(9.61M+3.S5MIi\.1 +5.16N+4.6NIi\.I) 

and 

Ii\.I +(1.51-0.SSIi\.12)M2+ 1i\.12(N+0.52)22.68 

+M(N + 0.52) Ii\. I (S. 56 +s.161i\.1>" N. 
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These regions are depicted in Fig. 5 for i\.=0. OS. There 
is a region, the double shaded region, compatible with 
constraints (3.9) and the straight line contraction map
ping constraint. The best bound is i\. = O. 032. There is 
little difference in results between this and the Holder 
space analysis of Eq. (3.1). This is probably because in 
the analytic space reformulation the equations become 
much more complicated [(3.6), (S. 7)], and our very 
crude bounding methods are at a disadvantage. 

ACKNOWLEDGM ENTS 

I would like to thank Dr. K. Kajantie for hospitality 
at the Theoretical Physics Institute in Helsinki. I would 
also like to thank the referee for his helpful comments 
'on the first version of this paper. 

APPENDIX 

Theorem 1 (The Contraction Mapping Principle): If N 
maps a complete metric space K into itself and satisfies 
the condition 

6(Nlu NI2)" f3(fl,/2)' f3 < 1, 

for all 11>/2 E K and with f3 independent of 11>/2' then the 
equation 1= NI has a unique solution in K that can be 
obtained by iteration from any point in K. 

Theorem 2 (The Schauder Principle): Let K be a 
convex closed subset of a Banach space. If N is a con
tinuous mapping of K into itself such that N (K) is com
pact then N has at least one fixed point in K. 

Theorem 3: Let Nu N2 be operators defined on a 
bounded closed convex set K of a Banach space S and 
suppose 

(i) Nd + N2 gE K for every pair I, gE K, 

(ii) N2 is a contraction mapping on K, 

(iii) Nl is completely continuous on K, 

then there exists at least one fixed point hE K satisfying 

h=N1h+N2h. 

.10 

,05 

--+-------~~--------~~++------~M 
,05 .15 

FIG. 5. The region in (N,M) space defined by the constraints 
(3.9) for i\= O. 03. 
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Energy transfer in radiation chemistry. I. Dynamics of the 
electron-Oscillators system 
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Single-mode excitation events in radiation chemistry are investigated by considering a simple model: 
an electron (characterized by mass m and momentum hk) in interaction with a collection of 
harmonic oscillators. The Hamiltonian corresponding to this model is identified, and then used 
within the framework of a master equation constructed from the time-dependent Schrodinger 
equation. The usual long-wavelength approximation is employed, which, in the infinite-system limit, 
necessitates an upper bound on the frequency spectrum of the oscillator bath. Once these constraints 
have been imposed, however, the time evolution of the system is determined exactly (i.e., no 
"weak-coupling" approximation) in two limiting regimes-the case of a low-energy incident electron 
and that of a high-energy incident electron. Our results are compared with those obtained using a 
weak-coupling approximation, first within the framework of the master equation cited above and 
then in conjunction with the Prigogine-Resibois master equation, and it is pointed out that for the 
system under study, the use of a weak-coupling approximation in both equations leads to unphysical 
results. Our results are also compared with those obtained earlier by Van Hove and co-workers on 
the electron-random scatterers model, and an attempt is made to understand the role of the 
approximations introduced in both models. Finally, suggestions for future work are given; in 
particular, we discuss the generalization of our approach to deal with multiple-mode excitation 
events in radiation chemistry. 

1. INTRODUCTION 

A problem of contemporary interest in. radiation 
chemistry is the study of the deposition of energy in con
densed media from energetic charged particles, and the 
possible localization of this energy to produce a chemi
cal effect. 1 Burton2 has noted that these two events are 
not necessarily identical and that the chemical event 
may not even occur in the same vicinity in which the 
energy was deposited initially. Several authors3 have 
addressed themselves to the problem of identifying the 
separate effects associated with these two events, fo
cusing attention on such aspects as energy migration, 
tracks and spurs, time scales, mechanisms, and so on. 
Oftentimes, in the study of these phenomena, a partic
ular event is idealized by pOSing a simple model, and 
then, subsequently, the mathematical consequences of 
adopting the model are interpreted physically. The 
present contribution is similar in spirit to this type of 
study in that, recognizing the complexity of the general 
problem of energy transfer in radiation chemistry, we 
consider here only those dynamical events associated 
with the initial deposition of energy from the charged 
particle to the condensed medium (as opposed to those 
effects associated with later chemical events) and, sec
ondly, in that we introduce a model which, hopefully, 
preserves the essential features of the underlying phys
ical situation. In fact, the present study represents a 
departure from earlier work not so much in the concep
tualization of the problem as in the particular approach 
used to investigate the consequences of adopting a model 
Hamiltonian. 

We begin by recognizing that the dynamics governed 
by the Hamiltonian for a quantum-statistical system 
possessing many degrees of freedom can often be useful
ly described within the framework of a generalized 
master equation. Accordingly, in our approach we con
sider a model consisting of an electron in interaction 
with a collection of harmonic oscillators, and then for 
the associated Hamiltonian we determine the time evolu-
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tion of the system using a master-equation approach. 
We restrict the class of problems discussed in this 
paper by conSidering only single-mode excitation events; 
multiple-mOde excitation events are discussed only 
qualitatively, and a mathematical study of this more 
complicated situation will be deferred to a later paper. 
It is worth noting that the study of the electron-oscilla
tors problem via a master-equation approach goes right 
back to the classic work of Van Hove and coworkers, 4-7 

and although these authors obtained numerical solutions 
only to a certain "truncated" version of the electron-os
cillators problem (i. e., the electron-random scatterers 
problem), until quite recently this was one of the few 
models for which a full study, both analytical and nu
merical, had been carried through starting from a gen
eralized master equation. Indeed, one of the auxiliary 
objectives of the present study is to go beyond the re
sults presented in Refs. 4-7, so that the time-dependent 
behavior of the electron-oscillators system can be char
acterized, both qualitatively and quantitatively, and the 
results compared with similar studies on other simple 
models-the Wigner-Weisskopf atom in interaction with 
a radiation field (Refs. 8-12, hereafter referred to as 
I-V respectively), and an effective spin in interaction 
with the phonon modes of a lattice (Ref. 13, hereafter 
referred to as VI). A very practical objective of this 
kind of comparative study is that it might be possible to 
determine the consequences, both analytical and numeri
cal, of adopting specific approximations. In turn, it may 
be possible to ascertain for a given class of Hamiltonians 
which characteristics of the solution arise solely from 
features inherent in the representation itself and which 
are due to approximations introduced in order to make 
the problem solvable. This kind of question has received 
comparatively little attention, and it is hoped that the 
present study will cast some light on this very difficult 
problem. 

The mathematical methods we use in this paper are 
drawn almost entirely from earlier work by the authors 
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in collaboration with Davidson. 8-13 After the Hamiltonian 
has been introduced in Sec. 2, a quantum-mechanical 
master equation is constructed, following the procedure 
in TIl, and then a formal solution of the electron-oscil
lators problem is obtained; this solution takes the form 
of a contour integral, and it is this integral which forms 
the basis of our study in the remaining sections of the 
paper. It should be emphasized at the very outset that 
our formal results are obtained assuming (1) a partic
ular wave vector dependence describing the electron-os
cillators interaction term and (2) an upper bound on the 
frequency spectrum of the lattice, this in order to avoid 
the ultraviolet divergence at a certain stage in the calcu
lation. Explicit analytical results are then reported in 
Sec. 4 for two limiting situations, the case of a low
energy incident electron and the case of a high-energy 
incident electron. Our numerical results are presented 
in Sec. 5 along with a discussion and our conclusions. 

We remark that the final section attempts to deal with 
the apparent similarities and differences between our 
numerical results and those obtained in the study of the 
electron-random scatterers model; as pointed out in 
Ref. 5, the latter may be viewed as a contraction of the 
electron-oscillators system in that the energy of the os
cillators is supressed. It is noted that the evolution of 
both systems is nonexponential in the time, and the im
plications of this observation as regards an earlier re
mark of Zwanzig14 are brought out. That certain of the 
solutions exhibit a nonzero asymptotic limit is also 
noted, and correlations with earlier work on the Wig
ner-Weisskopf atom are indicated. Finally, on the 
basis of two calculations presented in Appendices A and 
B (the first dealing with the weak-coupling solution to 
the Schrodinger master equation and the second with a 
weak-coupling solution to the Prigogine-Rllsibois mas
ter equation), some concluding comments on the inap
plicability of a weak-coupling approximation in treating 
the electron-oscillators problem are offered. 

2. THE HAMILTONIAN 

The model considered in this paper consists of an 
electron characterized by mass m and momentum Iik in 
interaction with a collection of harmonic oscillators. 
Using the language of second quantization, 15 we write the 
Hamiltonian for the free electron as 

( 1) 

where 

(2) 

The electron creation and annihilation operators satisfy 
the fermion commutation relation 

(3) 

The Hamiltonian for the bath of oscillators is given by15 

Hbath=6 Irw(q~) (a:~ a,~ + t), (4) 
,~ 

where qx labels the vibrational modes; the creation and 
annihilation operators here satisfy the boson commuta
tion relation 

( 5) 

Finally, the interaction between the electron and the os-
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cillator bath is written as6
•
16 

~nt. =i(8-rr3/0)1/2yL; ";w(qx) (a:x a:..,~ ak- a'A atak_,), 
k •• 1t. 

(6) 

where 0 is the volume of the system and y is a coupling 
constant. Since it is deSirable to deal with a coupling 
constant which is dimensionless, we shall eventually 
replace y by a dimensionless coupling constant, F; in 
particular, following Frohlich, 17 we introduce a char
acteristic density n and energy l: such that 

(7) 

Although nand l: will not be specified explicitly until 
later, we note that in the Frohlich theory, where one 
considers a conduction electron in interaction with the 
vibrational modes of a lattice, n represents the number 
of ions per unit volume and l: denotes the Fermi energy. 

With the above remarks in mind, the full Hamiltonian 
corresponding to our model is given by 

H =6 E(k) at a k + L; Irw(q~)(a: a. + t) 
k 'A ~ ~ 

(8) 

3. THE FORMAL SOLUTION 

The time evolution of the electron-oscillators system, 
governed by the Hamiltonian of Eq. (8), will now be 
studied within the framework of the time-dependent 
Schrodinger equation 

iii :t I >¥(t»=HI>¥(t», (9) 

using an approach suggested in m. We begin by noting 
that Eq. (9) has the formal solution 

I>¥(t» =e-iHt/~ I>¥(O». 
The state vector for the electron-oscillators system is 
written as I k, qX>, where, in this ket, k signifies an 
electron with momentum Irk and ~ signifies an excita
tion in the qAth vibrational mode of the lattice. We 
choose the initial state of the system to be 

IN> = Ik, 0), (10) 

for which the electron has momentum Iik with k fixed 
and all vibrational modes of the lattice are de-excited; 
1. e., the oscillator bath is in the ground vibrational 
state. Given this initial state and the Hamiltonian of 
Eq. (8), the interaction of the electron with the oscilla
tor field may result in the new state 

wherein one mode of the oscillator field has been excited. 
In what follows, we choose the zero point of energy as 
that state for which the kinetic energy of the electron is 
zero and all vibrational modes of the oscillator field are 
de-excited, a state which is inaccessible given the ini
tial condition (10) and the Hamiltonian of Eq. (8). 

The Hilbert space is spanned by the states IN> and 
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I A). The corresponding completeness relation is 

IN><NI +L:IA)(AI=1. (11) 
A 

The properties of the electron and oscillator, creation 
and annihilation operators are defined by the following 
equations: 

a:Alk, 0) =(s,r/n)1/2Ik, ~), 

a.Jk, q~)= (S7T3/n)1/2Ik, 0), 

at 10, qA) = (S,r In)1/21 k, qA)' 

a k Ik, qA) = (S,r 1n)1/21 0, qA)' 

When the Hamiltonian acts on the state IN), the result is 

HIN> = E(k) IN> + iy(S7T3/n)L: ";w(rtJ Ik-q~,q~). (12) 
q':>. 

If we consider only single-mode excitation events, then 
the action of the Hamiltonian on the state I A) yields the 
result: 

HIA)== - iy ";W(qA) IN> + [E(k - q)+ nw(q:>.)] IA). (13) 

The state vectors obey the following normalization 
condition: 

(x I X') = O(qA - q'A)' 

(xIM==wIA)=O, 

WiN> == 1. 

(14a) 

(14b) 

(14c) 

Having specified the various operators and their prop
erties, we now express the Schrodinger equation in 
terms of the resolvent operator (z - Hlm- l

: 

IlJI(t) == - 2!i f dz e-izt(z - HI1t)-! IlJI(O», (15) 

where C is a contour parallel to and slightly above the 
real axis. Making the identification 

IlJI(O» = IN), 
we then introduce the definition 

IS(z,N» = (z - HI1t)-1 IN), 

for which there exists the expansion 

IS(Z,N»=SNIN)+~ SAIA). 

(16) 

(17) 

Inverting the first of these two equations and comoining 
it with the second yields 

SN(z-Hln)IN)+~S:>.(Z-Hlmlx)= IN). (IS) 

Taking the inner product of this expression with (N I and 
also with (A I allows one to solve explicitly for SN' thus 
obtaining 

SN= [z- E~) - ~ e:j ~ z_(1/n)[E~~~)q:>.)+nw(qA)11. 
(19) 

With this result, one can then write down the formally 
exact expression for the wavefunction of the system cor
responding to the state IN); it is 

(N IlJI(t» = - ~ ( dz e- izt 
27Tt lc 
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The associated probability that the system be found in 
the state IN) at time t is then given by 

p(t)= I wllJl(t» 1
2

, 

say, in conformity with the notation of the density
matrix formalism. 

In the limit of an infinite system, summations over 
modes A can be replaced by integrals over the wave 
vector q, that is, 

(27T)3 In L: - J dqA' 
:>. 

In this limit, then, Eq. (20) reads 

(21) 

Before one can proceed with the solution of this contour 
integral, it is necessary to specify first the wave vector 
dependence of W(qA)' Here we shall use a well-known ap
prOximation, 16 namely, that in the long-wavelength limit, 
this dependence is given by 

w(qA)=vlqAI, (22) 

where v is the velocity of sound. Given the structure of 
the integral appearing in the denominator of Eq. (21), it 
is seen that with this speCification of q:>. - dependence, 
an upper bound jJ. must be established on the wave vector 
spectrum so as to avoid the well-known ultraviolet di
vergence. With these two assumptions, then, Eq. (21) 
reads 

wi \fr(t»= - ~ f dz e-bt 

27Tt c 

where we have used 

and imposed the bound jJ. on the spectrum. 

(23) 

We note that the formal solution of Eq. (23) can be 
carried one step further by dealing explicitly with the 
jJ. integral appearing in the denominator of the contour 
integral. The result is 

(N IlJI(t» = - _1_. 1 dz e- izt 
27Tt c 

x (z _ E~) + 47T';:V I(Z»)"1, 

where 

I(z)=mnjJ. + 2m njJ.(2k - 2mnv) 

(24) 

(25a) 
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and 

q,. = k - mliv ± [mliv(mliv - k + 2Z/V»)1!2. (25b) 

Although the complicated structure of the integrand in 
the contour integral, Eq. (24), leads to something of an 
impasse in the analysis at this point, one can determine 
the explicit solution of Eq. (23) in two different regimes 
of energy transfer, and this task will be taken up in the 
following section. 

4. REGIMES OF ENERGY TRANSFER 
A. Low-energy incident electron 

Here we assume that the range of kinetic energies of 
the incident electron (fixed initially at some constant 
value) is bounded from above by the upper bound on the 
energy spectrum of the lattice; that is, we assume that 
€(k) ~IiVIL. Upon energy transfer, it is. then assumed that 
the final kinetic energy of the electron is negligible re
lative to the consequent single-mode excitation of the 
initially de-excited lattice. In particular, we require 
that €(k - qA) «IiW(qA)' a Simplification which permits us 
to replace Eq. (13) by the slightly different expression 

H I X) = - iy v'W(qA) IN) + Ii W(qA) I x). (26) 

Physically, the requirement €(k - q~)« Iiw(qJ approxi
mates the complete "stopping" of the incident electron. 

To study this case, we follow the same procedure as 
was outlined in the previous section, but proceed here 
from Eqs. (12) and (26) [as opposed to Eqs. (12) and 
(13)]. One then obtains the following expression for the 
probability amplitude: 

(N I w(t» = - -2
1

. i dz e- iot 

1TZ c 

( 
E(k) 41To/ f'"' qxdqA )-1 

X Z----2-
it Ii 0 z - vqA . (27) 

The Il integral appearing in the denominator of Eq. (27) 
can be handled explicitly, with the result 

(NI w(t» = - --!"'-j dz e- iot 

21Tt c 

{ 
E(k) 41TY [1l

3 
1l2(Z) (Z)2 (Z)3 (Vll-Z )J}-1 x Z--+-- -+- - +Il - + - In ---

Ii 1i2 3 2 v v v - z 

(28) 

It is convenient at this point to introduce the dimension
less variables 

R = IiVIl/€(k), 

T= FE(k)tR/Ii, 

~ = zli/RF €(k), 

(29) 

(30) 

(31) 

where F is the dimensionless interaction parameter of 
Frohlich, Eq. (7). Then, with the additional definition 

B = 2€(k)2 R2 !;/31TnIi3v3, (32) 

the expression for the contour integral, Eq. (28), may 
be written 
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( (l/B)d~e-itT 

X Jc F3~3In(1-1/F~)+p2e + (~F + l/B)~ +(t-l/RFB)' 

(33) 

a form in which the analytiC structure of the integral is 
more clearly displayed. To evaluate this contour inte
gral (via Cauchy's theorem), we separate the denomina
tor into real and imaginary parts so as to determine the 
location of the poles. We write 

~ =x+ iy 

and obtain 

Re (den) = F3(XS - 3xy2) In 11- l/F~ I 

_ p3(3ry _ y3) arg(l-l/F~) 

+ p2(r - y2) + (l/B + F/2)x + (t-1/BRF), 

1m (den) = F3(3ry - y3)lnll-l/F~ I 
+ p3(r - 3xy2) arg(l - l/F~) 

+ p2 2xy + (l/B + F/2)y. 

(34a) 

(34b) 

So that the logarithm be a single-valued function, we 
choose as the range of its argument, - 1T < arg ~ + 1T. 
Given that the variable ~ occurs in the argument as 
(1- l/F~), the choice -1T< arg ~+ 1T corresponds to 
choosing a branch cut in the ~-plane from the origin to 
the point l/F. One observes that the argument vanishes 
only when y = 0 and {x < 0 or x> 1/ F}. With this specifi
cation, we see that 

Re(den) =p3X3lnl1 -l/Fxl + p2x2 + (l/B +F/2)x 

+ (t- l/RFB), 

Im(den)=O. 

(35) 

(36) 

To gain a preliminary understanding of the behavior of 
Re(den) in the limit of large x, we make use of the well
known approximation1B 

In(1±'I1.10-n)=±'I1·lO-n_~2.1O-2n (n>10) 

(stated here in terms of '11, an arbitrary real variable) to 
study the behavior of In(l- l/Fx) as x - ± 00, and find 
that 

lim Re( den) = ± 00. ..... ,. .. 
Also, 

lim Re(den) = - 00, 
x-(1! F). 

lim Re(den) = t - l/RFB, 
x-o_ 

the last result following since 1B 

lim '11" In '11 =0 for a> O. ,,-0 

(37a) 

(37b) 

(37c) 

Taking into account the analytiC structure of the expres
sion for Re(den) and making use of the limits, Eqs. (37), 
one can sketch the approximate behavior of Re(den) vs 
x, and this is displayed in Fig. 1. Upon examining the 
behavior at x=O, we notice that if 

t> l/RFB, 

then the intercept on the Re(den) axis lies on the positive 
segment of that axis. As a consequence, the function 
Re(den) is expected to cross the x axis at two pOints, 
once on the negative x axis (at a point we shall refer to 
as ~J and once for ~ > l/F on the positive x axis (at a 
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Re(de.) 

IIF 
I 

I 

FIG. 1. A sketch of Re(den) vs x. The~. and L refer to the 
simple poles on the positive and negative x axis, respectively. 

point we shall denote as ~.). Indeed, a full numerical 
study of Eq. (35) reveals that for !> l/RFB these are 
the only two pOints in the ~ plane for which the denomi
nator of Eq. (33) vanishes. Conversely, if 

t < l/RFB, 

then the intercept on the Re(den) axis will be on the 
negative segment of that axis, and consequently the de
nominator of Eq. (33) will vanish only once, in partic
ular for ~ > l/F on the positive x axis. Given these re
marks, it is anticipated that the solution of the contour 
integral, Eq. (33), and hence the time evolution of the 
system will depend crucially on the coupling constant F, 
the incident kinetic energy of the electron, and the cutoff 
on the wave vector spectrum. 

Choosing the contour shown in Fig. 2, and noting that 
the contribution to the integral from the large semicir
cle and the two small circles vanishes [Jordan's lemma 
applied to the integrand of Eq. (33)], we have 

(38) 

where Re(x) is given by Eq. (35) and, as indicated above, 
~_ and L designate the simple poles on the negative and 
positive x axis, respectively. To determine the residues 
at the poles, we expand the denominator in a Taylor 
series about the poles: 

denominator =Do + Dl(~ - ~i) + ~D2(~ _ ~i)2 + ... , 

where Dl is the first derivative, D2 is the second deriv
ative, and so on; the coefficient Do must be zero since 
the denominator vanishes at ~ = ~i' Numerical studies 
reveal that Dl is nonzero in the neighborhood of the 
poles, so that the residue at either pole is 

Res= e-UiT/Dl(~i)' 

The final expression for the wavefunction of the system 
in the state IN) for the case of one pole U t < l/RFB) is, 
therefore, 

(39) 

Hence, the diagonal element of the density matrix for 
the electron-oscillators system for the case that a 
single pole contributes is 
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C(r)- • 

- Re(x)2 + 'TfF6x 6 

o 
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(40) 

(41) 

(42) 

The wavefunction for the system in the state IN) for the 
case that both poles, L and to contribute is 

I 1 I. e-U +T e- il_T 111 F .r e- i "" dx ) 
(N w(r» = 'B\.Dl(U + Dl(U +Fl 0 Re(x)2+'Tfji4x6' 

(43) 

The diagonal element of the density matrix for the elec
tron-oscillator system is then given by 

( )_..!.[ 1 1 2cos(~.-Ur 
p r - B2 Dl(~Y + Dl(U2 + Dl(UD1(U 

+ 2Fl C( r) f.cos(~. r) + cos( ~_ r) ~ 
\ Dl(U Dl(U / 

+ 2~ S( 'T) f!3in(~. r) + sin( ~_ r) \ 
\ Dl(U Dl(U J 

+F6[C2(r)+S(~)]J. (44) 

with Re(x) given by Eq. (35). These, then, are the ex
pressions for the evolution of the system as determined 
from the time-dependent Schrodinger equation, subject 
to (1) the long-wavelength approximation, (2) the use of 
an upper bound on the frequency spectrum, and, specifi
cally for this case, (3) the restriction of the initial ki
netic energy of the electron to low energies" The third 
assumption will be changed in the following section, 
where we will consider the case of a high-energy inci
dent electron, but, before proceeding, we indicate 
briefly the method of solving Eqs. (40) and (44) numeri
cally. First, one determines the number and location of 
the poles and then evaluates the corresponding first 
derivatives. Next, the S( r) and C( 'T) are computed, and, 
finally, the expression for p( r) is studied as a function 
of r. The results of our numerical studies will be re
ported in Sec. 5. 

E- plane 
y, 

FIG. 2. The contour used in evaluating the expressions for 
<N Iw(t). 
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B. High-energy incident electron 

Here one considers the limiting situation wherein the 
kinetic energy of the incident electron (again, fixed at 
some constant value) is assumed to be much larger than 
the energy corresponding to any single excitation of the 
initially de-excited lattice; that is, we assume that 
e(k) »liVJ1.. We then require that, upon energy transfer, 
although the electron may deposit a quantum of energy 
nwv where nw~ «e(k), the overall change in the kinetic 
energy of the electron is negligible relative to its inci
dent kinetic energy. The consideration of this limiting 
situation is equivalent to the statement that e(k - q~) 
;:;e(k), so, in terms of our formulation of the problem, 
Eq. (13) is replaced by the modified expression 

HIX)=-iyv'w(q~) IN)+ [e(k)+nw(q~)] Ix). (45) 

Again, following the same procedure as was utilized in 
Section 3, but proceeding now from Eqs. (12) and (45), 
the following expression is obtained for the inverse 
Laplace transform of the probability amplitude: 

(N 1lJ!(t» = ~ldZ e-1zt 

2m c 

x ( e(k) yll41TV fU q~dqA )-1 
~ - If - fi2" z - (1/1f)[e(k) + nvqJ • 

o 

(46) 

It is convenient at this point to extract the phase e- Ie( k) t I ~ 
from the right-hand side, thus obtaining 

(47) 

Treating the J1. integral explicitly leads to the result 

We now transform to the dimensionless variables R, T, 

and ~ introduced earlier, and replace y2 by the corre
sponding expression involving F. The result is 

(N 1lJ!( T» e iT I FR = 

(49) 

It is seen that this contour integral is similar in struc
ture to Eq. (33), but with one important difference; again 
referring to Fig. 1, we see here that the intercept on 
the Re(den) axis is always positive, and hence the de
nominator will always vanish once for ~ on the negative 
real axis and once for ~ > l/F on the pOSitive real axis. 
Accordingly, the diagonal element of the denSity matrix 
will have the same formal structure as the "two-pole" 
result, Eq. (44), but with the Re(x) given by 
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Re(x}=F3.x3ln 11-1/Fxl + F2x2 + (1/B+F/2)x+ t. (50) 

Our numerical study of this case will be presented in the 
following section, along with a general discussion and 
our conclusions. 

5. 01 SCUSSION 

In this paper we have introduced a simple model to 
study the deposition of energy in a condensed medium 
from an energetic charged particle. Our approach is 
different from previous work in radiation chemistry in 
that we determine the dynamics of the electron-oscilla
tors system starting from a master equation constructed 
from the time-dependent Schrodinger equation. It was 
found that, provided one imposed a frequency cutoff to 
avoid the (ultraviolet) divergence associated with the 
adoption of the long-wavelength approximation, an ex
plicit analysis could be carried through in two, quite 
different, energy regimes: the case of a low-energy 
incident electron and that of a high-energy incident elec
tron. It is worth emphasizing that once the long-wave
length and cutoff approximations have been introduced, 
and the energy regime speCified, the subsequent analy
sis is carried through without any restriction on the 
coupling between the electron and the oscillator bath; 
that is, a weak-coupling approximation is not introduced 
in solving the resulting master equation. Indeed, it is 
most instructive to compare the results obtained with 
and without the use of a weak-coupling approximation, 
and this comparison will be made later on in this section. 

Whereas our over-all objective in this work is the ap
plication of the master-equation approach to problems of 
experimental interest in radiation chemistry, it is our 
belief that before specific property calculations are 
undertaken, the dynamical behavior of the electron-os
cillators system must be thoroughly characterized, both 
qualitatively and quantitatively. Accordingly, in the 
present paper, we report only a few, representative 
calculations which serve to display the time evolution of 
p( T), as determined by the master equation introduced 
in Sec. 3, when the electron-oscillators system is sub
jected to a certain, well-defined set of constraints (that 
is, particular values of F, R, and B). 

We consider first the numerical results obtained in the 
low-energy regime. Here we had required the range of 
possible incident kinetic energies of the electron to be 
bounded from above by nvJ1.; that is, we specified 
e(k) .r;nvJ1.. Furthermore, upon energy transfer, it was 
assumed that the final kinetic energy of the electron was 
negligible relative to a single excitation of the initially 
de-excited field; that is, we required that e(k - qJ 
«nw( q~). To facilitate our discussion of this case, it is 
useful to point out that the dimensionless parameter R, 
defined by Eq. (29), is just the ratio 

R _ upper bound on the energy spectrum of the lattice 
- incident kinetic energy of the electron . 

Clearly, then, for the low-energy case, the range R? 1 
is the regime of interest, and for definiteness we con
sider the choice R = 2. 0; this value of R corresponds to 
an incident kinetic energy of the electron equal to one
half the upper bound on the energy spectrum of the lat
tice. The next parameter which must be specified is the 
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FIG. 3. A plot of p(T) vs T for the case of a low-energy incident 
electron, for the choice of parameters F=0.1, R=2.0, and 
B=1.0. 

dimensionless coupling constant F, and here, in order 
to permit a meaningful comparison with the two weak
coupling theories mentioned earlier, we adopt the value 
F = O. 1 as our initial choice for the value of the coupling 
between the electron and the oscillator bath. Finally, 
the parameter B, although devoid of any obvious physical 
interpretation, must be chosen so as to be consistent 
with the particular values selected for F and R. In ad
dition, we must identify the characteristic density nand 
energy b used in the definition, Eq. (7). Given the nature 
of the electron-oscillators model, the density n is con
veniently chosen to be the density of modes, that is, the 
number of modes of the oscillator bath per unit volume 
available for energy deposition via interaction with an 
energetic electron; this density will be proportional to 
(21T)-3(f1T/L3). The characteristic energy parameter b can 
be chosen to be the quantum-mechanical energy for a 
single particle of mass m and momentum 11k in a volume 
0, and for definiteness we assume that b=O. lE(k). With 
these specifications, the magnitude of the parameter B 
is of the order of unity, and whereas we have a certain 
flexibility in assigning a value to B, in our subsequent 
calculations we shall set B = 1. O. 

The time evolution of p( 1'), as determined by the solu
tion to the master equation for the set of value s F = O. 1, 
R = 2. 0, and B = 1. 0, is displayed in Fig. 3. An exam
ination of this figure reveals that the electron-oscilla
tors system relaxes, eventually, in such a way that 
p( 1') - 0 as l' - co; this property of the solution is equiv
alent to the statement that in the asymptotic limit the 
electron has zero probability of being found in the initial 
state IN). The associated decrease in the kinetic ener
gy of the electron approximates the "stopping" of a 
charged particle passing through a condensed medium. 
Of some considerable interest is the observation that the 
essentially exponential decay is overlaid with nonexpo
nential oscillations; calculations show that these oscil
lations tend to become less rapid as the parameter R ap
proaches unity, while, at the same time, the individual 
amplitudes of these oscillations tend to increase. (See 
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FIG. 4. A plot of p(T) vs T for the case of a high-energy inci
dent electron, for the choice of parameters F= 0.1 and B= 1. O. 

Fig. 6, discussed later.) With particular reference to 
the role of the cutoff in determining the characteristics 
of these non exponential contributions, this behavior is 
reminiscent of that found in VI, where a weak-coupling 
solution to the Prigogine-Rl!sibois master equation was 
obtained for the Wigner-Weisskopf atom in a three-di
mensional radiation field and for a Single, effective spin 
in interaction with the vibrational modes of a three-di
mensional lattice; in this respect, the cutoff parameter 
seems to play the same role in all three models. 

Turning our attention to the case of a high-energy in
cident electron, we recall that the range of possible ki
netic energies of the electron was assumed to be bounded 
from below by IZv/L; that is, we required that E(k) > IZv/L. 
This assumption, and the further requirement that the 
change in the kinetic energy of the electron upon inter
action is negligible relative to its initial kinetic energy, 
effectively remove the R-dependence from the final ex-

1.0 

.8 

.6 

.4 

2 3 4 

FIG. 5. A plot of p(T) vs T for th~ case of a high-energy inci
dent electron, for the choice of parameters F= 1. 0 and B= 1. O. 
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pression for p(r). [See Eq. (46).] Hence, we need 
specify only the parameters F and B in our calculations 
here, and for purposes of comparison we choose the 
values F=O.l and B= 1. O. The resulting behavior of 
p( r) is graphed in Fig. 4, where it is seen that the 
probability that the electron be in the state IN) at time 
r is close to unity, which implies that the electron is 
essentially unaffected as it migrates through the lattice. 
Since our study was performed without imposing a weak
coupling approximation, we can also consider the case 
wherein the incident electron, although possessing a 
very high energy, couples very strongly to the phonon 
modes of the lattice. This situation is studied by fixing 
B= 1. 0, but allowing the coupling parameter F to in
crease by an order of magnitude; that is, we set F= 1. O. 
The result is shown in Fig. 5, where it is seen that the 
probability that the electron be in the state IN> at time 
r is characterized by slowly varying oscillations with 
large amplitude. This behavior, associated with an in
crease in the magnitude of the coupling constant, is 
again reminiscent of the behavior found in the two mod
els studied in VI using the Prigogine-R~sibois master 
equation. 

For single-mode excitation processes, we notice that 
in the high-energy case, p( r) does not approach zero 
as r- "". Of course, physically, we expect that as the 
electron migrates through the lattice, it will deposit 
energy in a succession of modes, eventually losing all 
of its kinetic energy with the consequence that p( r) - 0 
as r- "". NOW, to generalize our approach to deal with 
a sequence of de-excitation events USing the Hamiltonian, 
Eq. (8), one must retain the explicit q),-dependence in 
the term €(k - qJ. The immediate consequence of this 
generalization is that a whole hierarchy of coupled equa
tions arises. To illustrate this point for the simplest 
possible case, suppose that two modes of the lattice 
are successively excited by interaction with the ener
getic electron; as regards the history of the electron, 
it passes from an incident energy €(k) to €(k - qJ to 
E(k - q), - q),,), while, at the same tiem, the lattice is 
excited successively from 10) to Iq),) to Iq)"q),,). Thus, 
even for a three-state problem one has two coupled 
(singular) equations which would have to be solved 
simultaneously, and for obvious reasons this problem 
is even more difficult to solve exactly than the one 
discussed in this paper. Nonetheless, as will be shown 
in a subsequent paper where we take up the problem of 
multiple-mode excitation events, progress can be made 
if one adopts a rationale for decoupling the hierarchy of 
equations. 

It should be remarked that in the low-energy regime, 
the assumption €(k) «fiw(q),) also has the effect of re
moving the q),-dependence from the term €(k - qx), but 
here we find that p( r) - 0 as r - 00 as expected, since in 
this regime €(k) < fivjJ., and the electron can transfer its 
kinetic energy via a single-mode excitation event. To 
pursue this point further, one can consider the border
line case wherein one sets E(k) = 1ivjJ. and then works out 
the dynamics using the low-energy formulation. As is 
seen from Fig. 6, removal of the q),-dependence in the 
regime E(k) = fivjJ. (R = 1. 0) leads to results which are 
intermediate between those displayed in Fig. 3 (the case 
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E(k) < fivjJ.) and Fig. 4 (the case f(k) > fivjJ.). Physically, 
these results suggest that in the intermediate-energy 
regime (an electron characterized by an incident kinetic 
ene rgy E( k) ;; fiv jJ.) a charged particle tends not to be 
"stopped" via any single-mode de-excitation event. It 
should also be mentioned that nonzero asymptotic limits 
(as displayed, for example, in Figs. 4 and 5) are linked 
to the question of ergodicity, as pOinted out in V; we 
shall not discuss this point here, since the use of the 
approximation E(k - q),);; €(k) in the high-energy case 
would make the comparison between the results found 
here and the results found in V somewhat tentative
despite the fact that strong qualitative similarities do 
exist between the results found in the two studies. 

The next point to be taken up concerns the comparison 
of our results with those obtained by Van Hove and co
workers. 4-7 As stated in the Introduction, Van Hove de
veloped a master equation for the system of an electron 
interacting with a collection of static, random scatter
ers. Three different expressions were derived de
scribing the behavior of this system for weak, inter
mediate, and strong coupling between the electron and 
the scatterers. Their numerical studies showed the time 
evolution of the system to be characterized by damped 
oscillations in the limit of strong coupling and by an es
sentially monotonic decay in the limit of weak coupling. 
Now, it is stated in Ref. 5 that the master equation for 
the electron-scatterers system can be regarded as a 
contracted form of the master equation for the electron
oscillators system, but one for which the energy of the 
oscillators has been suppressed. It is most interesting, 
therefore, to compare the evolution of the electron-os
cillators system as determined via our analysis with the 
evolution characterizing the electron-scatterers system, 
and, in particular, with the numerical results reported 
in Ref. 7 for various coupling regimes. The chief simi
larity in the behavior of the two systems is the emer
gence of nonexponential behavior as the coupling between 
the electron and the system under study increases. As 

2 4 5 

FIG. 6. A plot of piT) vs T for the case of an intermediate-en
ergy incident electron, for the choice of parameters F=O.l, 
R=1.0, andB=1.0. 
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pointed out by Zwanzig, 14 exponential decay in time may 
not be universal, and may, in fact, be hidden behind 
some other, more complicated type of time dependence. 
Indeed, other studies on simple models treated via a 
master-equation approach (e. g., the Wigner-Weisskopf 
atom in a radiation field and a single, effective spin in 
interaction with the phonon modes of a lattice) reveal 
this same property, and hence one is led to the tentative 
conclusion that perhaps this behavior is general enough 
to be of importance in energy-transfer problems in ra
diation chemistry. In particular, it would be most inter
esting to examine the experimental consequences of this 
predicted nonexponential relaxation in the specific prob
lem of electrons scattered from thin films, a problem 
currently under experimental investigation by W. 
Hamill. 19 

The significant difference which emerges from the 
numerical work on the two systems is that the time evo
lution of the scatterers system is characterized by 
p( 'T) - 0 as 'T - 00 for all couplings, whereas in our study 
this behavior is found only in the limit of weak coupling 
in the low-energy regime. As mentioned earlier in our 
discussion of the electron-oscillators system, the re
moval of the qx-dependence from the term E(k - q),) is 
responsible for our p( 'T) not exhibiting this behavior in 
the asymptotic time limit. On the other hand, Van Hove, 
in his solution of the electron-scatterers problem, as
sumed that his transition probability WII,(k, k/) satisfied 
the condition 

k, k' ";a, 
otherwise, (51) 

where W and a are arbitrary positive constants; it is 
noted in Ref. 5 that this approximation is necessary in 
order to obtain an explicit solution to the scatterers 
problem. Now, the statement, Eq. (51), is equivalent to 
the assumption that the functional dependence of the 
transition probability on the wave vector may be totally 
suppressed, and in one sense this is equivalent to the 
procedure whereby the q).-dependence in the term 
E(k - qx) is removed in our treatment. Moreover, the 
assumption, Eq. (48), is equivalent to establishing an 
upper bound on the energy spectrum, in that the restric
tion k, It' .,; a is imposed, and so here again a similarity 
with our treatment, whereby a bound is imposed on the 
energy spectrum of the lattice, can be noted. Therefore, 
at first sight, it would seem that the kinds of approxi
mations introduced in solving the electron-scatterers 
problem are somewhat similar to those employed in our 
treatment of the electron-oscillators problem, and this 
suggests that the difference in behavior exhibited by the 
two models may be due to an even more fundamental dif
ference in the formulation of the two problems. Here 
we remark that in Van Hove's treatment of the electron
scatterers problem, a significant number of excited 
vibrational modes are considered. On the other hand, 
in our study the states considered are those in which 
either no vibrational mode or (after deposition) only one 
vibrational mode of the lattice is excited. Since the 
number of vibrational modes excited may be thought of 
as a measure of the temperature of the system, perhaps 
one can conclude from this that the temperature of the 
bath plays an essential role in determining the behavior 
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p( 'T) - 0 as 'T - 00. This point will be pursued further in 
our subsequent study. 

The final point to be made regarding our analysiS con
cerns the two weak-coupling calculations presented in 
Appendices A and B. In Appendix A, the evolution of the 
electron-oscillators system is determined from the 
Schrodinger equation for the case of a high-energy inci
dent electron by using the operator expansion 

z-- -6 z_::J! - z_::J!.. ~ H.)-1 _ .. ( H~-1 [V ( H )-1J" 
If n=o If If If , (52) 

where 

Ho=E E(k)a: a k + L: Ifw(q),)[a: a. + H (53) 
k .). l. X 

and where V is the interaction part of the Hamiltonian, 
defined by Eq. (6). The weak-coupling approximation 
here corresponds to retaining only the first nonzero 
term in the above expanSion. The behavior predicted by 
the solution, Eq. (All), is clearly undesirable, due to 
the presence of secular terms D( of) in this expression 
for the diagonal element of the density matrix. In par
ticular, the term ofB2 /9 causes the density-matrix ele
ment to grow without bound as 'T increases, even in the 
limit that the coupling parameter approaches zero. To 
remedy this, one might try to retain higher-order terms 
in the operator expansion, but this does not seem to re
sult in an improvement. It is possible to understand why 
this perturbation expansion fails by comparing Eqs. (19) 
and (A4). One sees that the perturbation expansion is 
equivalent to (z - E(k)/1t)-1 times the geometric series 
expansion for (1 - f(z»-r. where 

and that the condition on the radius of convergence for 
such series, If(z) I < I, is not satisfied. Thus, for this 
problem we conclude that the use of a weak-coupling ap
proximation generated by using the operator expansion, 
Eq. (49), is unacceptable. 

In Appendix B, the evolution of the electron-oscilla
tors system is studied by constructing a weak-coupling 
solution to the Prigogine-R~sibois master equation, 
and it is found that the result is identical to the equation 
obtained in our earlier study of spin-lattice relaxation. 13 

The evolution is characterized by an exponential com
ponent plus nonexponential contributions consisting of 
damped oscillations. The behavior of the system depends 
on the values chosen for the coupling parameter F and 
the parameter B. This dependence is described in detail 
in VI, where the results of several numerical studies 
are reported. As is the case for spontaneous photon 
emission and spontaneous phonon emission-phenomena 
previously studied via a weak-coupling solution to the 
Prigogine-R~sibois master equation-negative values 
for the overall density-matrix element appear in the 
electron-oscillators problem. Comments concerning 
this undesirable feature are presented in I and also ap
ply here. 

The significance of these two weak-coupling studies 
as regards the present work can now be understood. It 
might have been hoped that a weak-coupling approxi-
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mation, properly introduced within the framework of the 
Schrodinger master equation or the Prigogine-Rtlsibois 
master equation, might have allowed a "shortcut" in the 
mathematical analysis of the problem that, in turn, 
would have permitted the. subsequent consideration of 
more complicated dynamical events. In the former case, 
however, the use of a weak-coupling approximation 
leads to the occurrence of secular terms which cause 
the diagonal element of the density matrix to grow with
out bound with increasing time, whereas the use of this 
approximation in the Prigogine-Rllsibois master equa
tion results in negative contributions to the density 
matrix, which defy the physical interpretation of a den
sity matrix. In other words, for this class of problems 
a weak-coupling approximation seems to fail even in the 
simplest case of an effective two-state relaxation 
process. 

In conclusion, then, we have considered in this paper 
a model of an electron in interaction with the phonon 
modes of a lattice, with particular emphasis on the 
"stopping" of the electron via single-mode de-excitation 
events. The formal solution was obtained, Eq. (24), but 
the mathematical difficulties associated with quadratic 
terms in E(k - q») led to the consideration of the problem 
in two limiting energy regimes (the case of a high-ener
gy incident electron and that of a low-energy incident 
electron), the mathematical consequence of which was 
that the q~-dependence in the term E(k - qJ could be re:' 
moved. Once the energy regime was specified, the sub
sequent analysis was carried through exactly; that.is, 
without imposing a weak-coupling approximation. The 
consequences of our study as regards predicted physical 
effects would seem to demand a careful study, and this 
shall be presented in a subsequent paper, where we will 
include as well a detailed comparison with the predic
tions of other theories of energy transfer. For the most 
part, however, the principal objective of the present 
paper has been achieved: to construct a mathematical 
framework, starting from first prinCiples, within which 
the energy-transfer problem in radiation chemistry 
could be discussed. This has been carried out by starting 
from a well-defined Hamiltonian, using an approach 
based on a master equation (in this case, one derived 
from the time-dependent Schrodinger equation) and 
employing only those approximations whose mathemati
cal consequences could be determined. It is in this 
spirit that our further studies will be pursued. 
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APPENDIX A: THE WEAK-COUPLING 
QUANTUM-MECHANICAL SOLUTION 

It is possible to obtain a weak-coupling description for 
the time evolution of the electron-oscillators system by 
making use of the operator identity 

( H)-1 ~ H )-1 ( H) -1 V ( H )-1 
z- If = \z-:yf + \z- =yt- Ii ~-1i, (AI) 
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where Ho is the unperturbed part of the Hamiltonian, Eq. 
(53), and V is the interaction part of the Hamiltonian, 
defined by Eq. (6). There exists an iterative expansion 
for Eq. (16) which can be derived by repeated application 
of this identity; it is 

(A2) 

The terms corresponding to n = 0 and n = 1 vanish, so 
we take as the weak-coupling solution the term corre
sponding to n = 2 in the expansion 

SN= (z - E~)y1 {I + (N I [; ~ -~) -J IN>}. (A3) 

Repeated application of the completeness relation affords 
the result 

(A4) 

We transpose from y2 to F and obtain an expression for 
the wavefunction for the system in the state IN>: 

1 f dze- 1zt 

(N I w(t» = - 21Ti (z .;. E (k)/Ii) 
c 

(
1 41T?;F :6 w(q,) ) (A5) 

x + 3nll1i(z - E(k)/Ii) A z - E(k - q~)/fi - w(q~) • 

It is convenient at this point to introduce the same as
sumptions that were invoked earlier (the long-wave
length and cutoff approximations), and for definiteness 
we consider the case of a high-energy incident electron. 
The result is 

1 f dze-ht 

(NI w(t» = - 21Ti c (z - E(k)/Ii) 

xiI + 2?;Fv IlL qA
3 

dq, ) 
, 3n1T1i(z - E(k)/Ii) 0 z - E(k)/fi - vq~ • (A6) 

We extract the phase factor e-i"H) t I ~ by performing the 
transformation z - E(k)/fi- z, and obtain 

(N I w(t» e+l€(k) t I ~ = - -. --1 f dze- lzt 

21Tt C Z 

xiI + 2?;Fv (IL ~). 
~ 3mrfiz J~ z - vq~ o 

(A7) 

It is also convenient to introduce the dimensionless vari
ables employed earlier, so that after performing the 
integration of the J.L-integral, one obtains 

(NI w( T» e+ iT I FR = _ ~ r d~ e-HT 
21Tt J_ 

c 

xft -? [* + ~~ +p2~2 +p3e ln (l- F~ )]}. (A8) 

This result readily reduces to 
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= 1 + - - - + F3B d~ e-It~ ~ In 1 - -iTB FB f ~ 1) 
3 2 F~ • 

c 
(A9) 

The contour illustrated in Fig. 2 is suitabl~ for evalua
ting the integral appearing in this expression. One finds 
that 

(N Il}t( T» e+l~ I FR 

= 1 + tiTB - iFB + PB[e-I~/F(l/,-2 + iITF) - 1/,-2], 

(A10) 

and the corresponding diagonal element of the density 
matrix is given by 

p( T) = 1- FB + t .FlB2 + t2.FlB2 cos( TIF) +tr2B2 

+ (1/T)(2 - j-FB).FlB sin(T/F) 

+ (1/T2) {(r~ - 2F3B) [1- cos(T/F)] 

- 2.f"3B2 cos( TIF) + rB2 Sin2(TIF)} 

- (1/T 3) [2F5~ sin(T/F)] 

+ (1/T4) [2 - COS2(TIF)]F6B2. (All) 

This result is the weak-coupling, quantum-mechanical 
solution for the electron-oscillators system determined 
using a master-equation approach, and it is noted at 
once that the expression contains secular terms 0(,-2). 

APPENDIX B: WEAK-COUPLING SOLUTION TO 
THE PRIGOGINE-RESIBOIS MASTER EQUATION 

An alternate method for studying the dynamiCS of a 
system possessing many degrees of freedom is to use 
the master equation derived by Prigogine and R6sibois20

; 

this master equation is obtained from the Liouville-von 
Neumann equation for the density matrix p. As it hap
pens, the weak-coupling solution to the Prigogine
R6sibois master equation for the electron-oscillators 
system can be determined quite easily, since many of 
the formal results obtained in our earlier work, in 
particular I and VI, can be taken over directly and used 
within the context of the present calculation; the reader 
is referred to these papers for a complete statement of 
the formal results, notation, etc. In order that the elec
tron-oscillators model may correspond as closely as 
possible to the two models studied in I and VI, it is 
necessary to extract the factor .f2 from the bath 
operators, so that 

Hba!h=:0 ilfw(qJ[a* a. + 1] 
~ ..~ ~ 

(B1) 

and 

(B2) 

It is also convenient to write the interaction term of the 
Hamiltonian in the equivalent form 

VIn! =:p [h:~ Q:'.~ Q k a:~ + h.~ Q:Qk-.~ a.), 
where 
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(B4) 

Notice that the summation over electron states has been 
suppressed, in accordance with the specification of the 
initial condition IN); this choice of initial condition also 
results in the vanishing of the destruction operator. 

To determine the time evolution of the system, it is 
necessary to evaluate the matrix element (vIRO(z)1 v): 

(v IRO(z) I v) = - i[(1/1i}(N + iv IHo IN + iv) 

- (1/1i}(N - ivlHo IN - iv) - Z]-l 

= - i«1/m{e(k)[6(NI> + iVI> - k) - 6(NI> - iVI> - k)] 

+ L; If w~ v~} - ztl 
~ 

== - i(E(NI> + iVI» - E(N I> - iVI» +:0 w~ v~ - Z)-l. 
~ 

(B5) 

In addition, it is necessary to evaluate Vv_v ' (N); here 
one finds 

Vv_v ' (N)=(N + i(v- v') I V IN - i(v- v'» 

=:p 6(NI> + i(vl>- v/l) -nk-.~) 6(NI>- i(vl>- vii) - nk) 

xh: .J2N~ + 1 6(v~ - v'~ - 1) 
~ 

+ :P6(NI> + i(vl> - v/I) - nk) 6(NI> - i(vl> - v/I) - nk_.~) 

xh.
A 

.J2NA + 1 6(vA, - VA -1). (B6) 

This equation may be written in the equivalent form 

Xh:
A 

.J2NA + 1 6(vA - VA' -1) 

+~6(NI>-i(nk_.A +nk» 6(vl>- v/I -nk+nk_.) 

xh • .J2NA + 1 6(vA, - VA -1). (B7) 
A 

It is most instructive to compare Eq. (B7) with Eq. 
(33) of 1. It is readily apparent, upon comparison of the 
initial and final states chosen for the electron-oscillators 
system with the corresponding states chosen for the 
model discussed in I, that Eq. (B7) is formally equiva
lent to Eq. (1-33). One also sees that the expression for 
(vIRO(z) I v) for the electron-oscillators system, Eq. 
(B5), is equivalent to the corresponding expression, Eq. 
(1-32), for the model of 1. Consequently, the expression 
for 1fJ{z), the Laplace transform of the collision operator, 
for the electron-oscillators system is formally equiva
lent to Eq. (1-34). While the two expressions are simi
lar in structure, however, the explicit dependence of 
IhA 12 on the wavevector is different for the two models 
considered. Nonetheless, this kind of formal similarity 
can be exploited, as was pointed out in VI, where, for 
one of the models considered in that paper, namely, an 
effective spin in interaction with the vibrational modes 
of a lattice, the corresponding expression for was also 
formally equivalent to the lJI(z) of 1. Now, the wave 
vector dependence of 1 hA 12 for the spin-lattice model is 
linear in k. As it happens, if one adopts the long-wave
length approximation, the same dependence of 1 hA 12 on 
the wave vector k is found for the electron-oscillators 
system. These arguments serve to demonstrate that the 
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probability that the electron-oscillators system be in 
the state IN) is exactly equivalent to the probability that 
the spin-lattice system be in its initial state, the latter 
probability being given explicitly by Eq. (VI-44). Given 
this correspondence, we can write down at once the 
weak-coupling solution to the Prigogine-Rllsibois mas
ter equation for the electron-oscillators system. In 
particular, the diagonal element of the density matrix 
which describes the probability that the system be in the 
state IN) at time T is given by 

(
T) _ exp[- 4 + (SR 2 + 32R + 4SlnR )O'/IT ]T 

P - 1 + (20'R2 + SO'R - 40'+ 120'lnR )/1T 

_ ...!. f'11R dH6a(~) cos( T/~) + 2q(~) sin( T/~)] 
21T e[9a(E)z + q(~)z] 

o 

_ ~f'1IR d~[2aW COS(T/~) - 2q(~) sin(T/~)] 
21T ~z[a(~)2 + q(~)2] 

o 

_ ~f'1IR 
21T 

'1 

_ ...!..l'1IR 
21T a 

Here 

+ a(E) InjO'- ~ I 
1T O'+~ . 

Also, 

R=1iVIJ./IiE, 

R =(VIJ. -E)/E, 

and 

liE = e(k) - e(k - q~), 
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where in these results we have set 

4tliEF 
(1=~ 

Extensive numerical calculations performed on Eq. (BS) 
(reported in VI) reveal that p( T) assumes negative values 
over certain ranges of T, even in the limit of very weak 
coupling. 

*This work is based on a dissertation submitted in partial ful
fillment of the requirements for the Ph.D. degree at the Uni
versity of Notre Dame. 
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Errata: Ether flow through a drainhole: A particle model in 
general relativity [J. Math. Phys. 14, 104 (1973)] 

Homer G. Ellis 

Department of Mathematics, University of Colorado, Boulder, Colorado 80302 
(Received 3 January 1974) 

Page Column Line Should read: 111 2 31 · .. (sin J)2 c? ... 
112 1 45 · .. Eq. (52) implies that p is 

105 2 31 The coframe system {w"} ... bounded .... 

105 2 32 · .• wl = dp - f(p)dt, 113 1 42 · .. (p2 + if) . ... 

106 1 4 ... (r' /r)f[(w2eo)e2 + ... 114 1 21 (i) -1 .. 2E .. - 1 + ... 

106 2 14 · .. Sec. V it will be 116 2 35 ... basis {(%x")(p)} of r P ••• 

106 2 18 (d
P r 116 2 46 de,,=w,,'(g) e • ... 

dt - f(p) + ... 
117 1 43 · " Preuss. Akad. Wiss. Phys.-

107 1 24· · .. token V(f2/2) ... Math. Kl. 7 ... 

107 2 18 ... o/at= a/aT. 118 2 4 · .. issue. 

Erratum: The evaluation of lattice sums. II. Number theoretic 
approach [J. Math. Phys. 14, 701 (1973)] 

M. Lawrence Glasser 

Battelle Memorial Institute, Columbus, Ohio 43201 
(Received 11 January 1974) 

Equation (10) should read: 
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The right-hand side of Eq. (34) should read: 

28(1- 28)~(S)j3(s) + (22s - 1)~(2s) 

- 22s[A2(S) _ B2(S) - j3(2s - 1)] 
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